作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2475-2482.doi: 10.3724/SP.J.1006.2022.14187
李建领1,2(), 公丹2,3, 王素华2, 陈红霖2, 程须珍2, 熊涛1,*(), 王丽侠2,*()
LI Jian-Ling1,2(), GONG Dan2,3, WANG Su-Hua2, CHEN Hong-Lin2, CHENG Xu-Zhen2, XIONG Tao1,*(), WANG Li-Xia2,*()
摘要:
为促进豇豆种质资源的高效利用和新基因发掘, 本研究基于豇豆F2群体, 利用重测序技术构建了包含2984个bin标记(142,146个SNP)的遗传连锁图谱。该图谱共11个连锁群, 总长1333.48 cM, 平均图距0.45 cM。不同连锁群的长度从84.63~183.15 cM不等, 平均图距从0.27 cM至0.89 cM不等。根据F2、F3的表型调查, 利用该图谱共检测到15个QTL, 分别与百粒重、花色、荚长、荚形、荚质、籽粒颜色等14个性状相关。其中荚质、荚长、主茎分枝数等分别检测到1个主效QTL区间, 其余性状检测到多个QTL区间。通过对区间内的基因注释分析, 分别确定了与荚长、单株荚数、籽粒颜色构成等性状相关的候选基因。本研究中QTL分析结果将为豇豆属重要性状的标记辅助选择奠定基础, 而候选基因筛选则有助于深入解析这些性状的遗传机理, 提高豇豆分子遗传学研究水平。
[1] | 徐雁鸿, 关建平, 宗绪晓. 豇豆种质资源SSR标记遗传多样性分析. 作物学报, 2007, 33: 1206-1209. |
Xu Y H, Guan J P, Zong X X. Genetic diversity analysis of germplasm resources of cowpea based on SSR markers. Acta Agron Sin, 2007, 33: 1206-1209. (in Chinese with English abstract) | |
[2] |
Lonardi S, Muñoz-Amatriaín M, Liang Q, Shu S, Wanamaker S I, Lo S, Tanskanen J, Schulman A H, Zhu T, Luo M C, Alhakami H, Ounit R, Hasan A M, Verdier J, Roberts P A, Santos J R P, Ndeve A, Doležel J, Vrána J, Hokin S A, Farmer A D, Cannon S B, Close T J. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J, 2019, 98: 767-782.
doi: 10.1111/tpj.14349 |
[3] | 郑卓杰, 王述民, 宗绪晓. 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 196-216. |
Zheng Z J, Wang S M, Zong X X. Chinese Edible Bean Science. Beijing: China Agriculture Press, 1997. pp 196-216. (in Chinese with English abstract) | |
[4] |
Fatokun C A, Menancio-Hautea D I, Danesh D, Young N D. Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics, 1992, 132: 841-846.
doi: 10.1093/genetics/132.3.841 pmid: 1361476 |
[5] |
Ouédraogo J T, Gowda B S, Jean M, Close T J, Ehlers J D, Hall A E, Gillaspie A G, Roberts P A, Ismail A M, Bruening G, Gepts P, Timko M P, Belzile F J. An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome, 2002, 45: 175-188.
pmid: 11908660 |
[6] |
Muchero W, Diop N N, Bhat P R, Fenton R D, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers J D, Roberts P A, Close T J. A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci USA, 2009, 106: 18159-18164.
doi: 10.1073/pnas.0905886106 |
[7] |
Lucas M R, Diop N N, Wanamaker S, Ehlers J D, Robert P A, Close T J. Cowpea-soybean synteny clarified through an improved genetic map. Plant Genome, 2011, 4: 218-225.
doi: 10.3835/plantgenome2011.06.0019 |
[8] | Garcia-Oliveira A L, Zate Z Z, Olasanmi B, Boukar O, Gedil M, Fatokun C. Genetic dissection of yield associated traits in a cross between cowpea and yard-long bean (Vigna unguiculata (L.) Walp.) based on DArT markers. J Genet, 2020, 99: 57. |
[9] | Pan L, Wang N, Wu Z, Guo R, Yu X, Zheng Y, Xia Q, Gui S, Chen C. A high density genetic map derived from RAD sequencing and its application in QTL analysis of yield-related traits in Vigna unguiculata. Front Plant Sci, 2017, 8: 1544. |
[10] | Lo S, Muñoz-Amatriaín M, Boukar O, Herniter I, Cisse N, Guo Y N, Roberts P A, Xu S, Fatokun C, Close T J. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci Rep, 2018, 8: 6261. |
[11] |
Andargie M, Pasquet R S, Muluvi G M, Timko M P. Quantitative trait loci analysis of flowering time related traits identified in recombinant inbred lines of cowpea (Vigna unguiculata). Genome, 2013, 56: 289-294.
doi: 10.1139/gen-2013-0028 |
[12] | Herniter I A, Muñoz-Amatriaín M, Lo S, Guo Y N, Close T J. Identification of candidate genes controlling black seed coat and pod tip color in cowpea (Vigna unguiculata [L.] Walp). Genes Genom Genet, 2018, 8: 3347-3355. |
[13] | Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15. |
[14] | 王佩芝, 李锡香. 豇豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 11-23. |
Wang P Z, Li X X. Descriptors and Data Standard for Cowpea [Vigna unguiculata (L.) Walp.]. Beijing: China Agriculture Press, 2006. pp 11-23. (in Chinese with English abstract) | |
[15] |
Wang L X, Wang J, Luo G L, Yuan X X, Gong D, Hu L L, Chen H L, Wang S H, Chen X, Cheng X Z. Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size. J Integr Agric, 2021, 20: 1753-1761.
doi: 10.1016/S2095-3119(20)63343-3 |
[16] | Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J, Xu C, Sun X, Hou X, Wang X, Zheng H. Construction and analysis of high-density linkage map using high- throughput sequencing data. PLoS One, 2014, 9: e98855. |
[17] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[18] |
Angira B, Zhang Y, Scheuring C F, Zhang Y, Masor L, Coleman J R, Liu Y H, Singh B B, Zhang H B, Hays D B, Zhang M. Quantitative trait loci influencing days to flowering and plant height in cowpea, Vigna unguiculata (L.) Walp. Mol Genet Genomics, 2020, 295: 1187-1195.
doi: 10.1007/s00438-020-01680-y |
[19] | Wang J, Li J L, Liu Z X, Yuan X X, Wang S H, Chen H L, Chen X, Cheng X Z, Wang L X. Construction of a high-density genetic map and its application for QTL mapping of leaflet shapes in Mung bean (Vigna radiata L.). Front Genet, 2020, 11: 1032. |
[20] | Herniter I A, Lo R, Muñoz-Amatriaín M, Lo S, Guo Y N, Huynh B L, Lucas M, Jia Z, Roberts P A, Lonardi S, Close T J. Seed coat pattern QTL and development in cowpea (Vigna unguiculata [L.] Walp.). Front Plant Sci, 2019, 10: 1346. |
[21] |
Perrin R M, Wang Y, Yuen C Y, Will J, Masson P H. WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J, 2007, 49: 961-971.
pmid: 17319849 |
[1] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[4] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[5] | 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352. |
[6] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[7] | 宋博文, 王朝欢, 赵哲, 陈淳, 黄明, 陈伟雄, 梁克勤, 武名. 基于高密度遗传图谱对水稻粒形QTL定位及分析[J]. 作物学报, 2022, 48(11): 2813-2825. |
[8] | 余鑫莲, 李新, 姚晓华, 姚有华, 白羿雄, 安立昆, 吴昆仑. 青稞早抽穗主效QTL cqHD2H-2的遗传定位及候选基因分析[J]. 作物学报, 2022, 48(10): 2463-2474. |
[9] | 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位[J]. 作物学报, 2022, 48(10): 2654-2662. |
[10] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[11] | 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833. |
[12] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[13] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[14] | 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390. |
[15] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
|