欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2879-2890.doi: 10.3724/SP.J.1006.2022.12078

• 耕作栽培·生理生化 • 上一篇    下一篇

超级稻品种南粳5718高产的光合生理特性研究

魏晓东1(), 张亚东1, 宋雪梅1,2, 陈涛1, 朱镇1, 赵庆勇1, 赵凌1, 路凯1, 梁文化1, 赫磊1, 黄胜东1, 谢寅峰2, 王才林1,*()   

  1. 1江苏省农业科学院粮食作物研究所 / 江苏省优质水稻工程技术研究中心 / 国家水稻改良中心南京分中心, 江苏南京 210014
    2南京林业大学 / 南方现代林业协同创新中心, 江苏南京210037
  • 收稿日期:2021-11-09 接受日期:2022-03-25 出版日期:2022-11-12 网络出版日期:2022-04-21
  • 通讯作者: 王才林
  • 作者简介:第一作者联系方式: E-mail: weiyinglin@163.com
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-01-67);江苏省重点研发计划项目(BE2021301);江苏省科技服务专项(KF[20]1001);江苏省种业创新基金项目(PZCZ201703)

Photosynthetic physiological characteristics of high yield super rice variety Nanjing 5718

WEI Xiao-Dong1(), ZHANG Ya-Dong1, SONG Xue-Mei1,2, CHEN Tao1, ZHU Zhen1, ZHAO Qin-Yong1, ZHAO Ling1, LU Kai1, LIANG Wen-Hua1, HE Lei1, HUANG Sheng-Dong1, XIE Yin-Feng2, WANG Cai-Lin1,*()   

  1. 1Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, Jiangsu, China
    2Nanjing Forestry University / Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, Jiangsu, China
  • Received:2021-11-09 Accepted:2022-03-25 Published:2022-11-12 Published online:2022-04-21
  • Contact: WANG Cai-Lin
  • Supported by:
    The Earmarked Fund of China Agriculture Research System of MOF and MARA(CARS-01-67);The Jiangsu Key Research and Development Program(BE2021301);The Jiangsu Science and Technology Service Project(KF[20]1001);The Jiangsu Seed Industry Innovation Fund Project(PZCZ201703)

摘要:

南粳5718是2019年通过江苏省审定的优良食味粳稻品种, 2021年被农业农村部确认为超级稻。研究其产量构成特点、光合特性及其生理基础, 有助于解析超级稻品种的光合特征并通过遗传改良提高水稻的光合性能, 为粳稻高产育种和栽培提供理论依据。本研究以南粳5718父母本及目前大面积推广的相同生育类型水稻品种淮稻5号为对照, 研究了南粳5718从孕穗始期剑叶全展时到开花后35 d植株地上部分干物重、剑叶叶绿素含量、光合速率、光系统II (PSII)的光化学特性、核心天线蛋白的表达量变化、光合酶活性变化、叶绿体超微结构等特性。结果表明, 南粳5718叶片色素含量高, 与父本盐粳608接近, 生育后期干物重、剑叶净光合速率、PSII电子传递活性显著高于父母本和淮稻5号, PSII光能转化性能优越, 核心天线蛋白CP43、CP47在强光高温下较稳定, 且调整能力优于父母本和淮稻5号, 剑叶中RuBP羧化酶活性较高, 光合同化产物含量高, 叶绿体结构稳定, 出现衰老特征晚, 叶绿体衰败速度慢。本研究表明超级稻南粳5718剑叶良好的光合性能是高产特性形成的基础, 光系统蛋白质的高活性和性能是提高叶片光合功能的主要因素, 叶绿体结构的稳定性是叶片高光效的有力保障。

关键词: 水稻, 高产, 光合生理, PSII, 叶绿体结构

Abstract:

Nanjing 5718 is a rice variety with good eating quality approved by Jiangsu province in 2019 and was confirmed as super rice by the Ministry of Agriculture and Rural affairs in 2021. Studying its yield composition characteristics, photosynthetic characteristics, and physiological basis can be helpful to investigate photosynthetic traits of super rice variety, improve its photosynthetic performance through genetic improvement, and provide the theoretical basis for high-yield breeding and cultivation of japonica rice. In this study, the parents of Nanjing 5718 and Huaidao 5, a widely popularized rice variety with the same growth period type, as the control, dry weight of aboveground of plant, chlorophyll contents, photosynthetic rates, and photochemical characteristics of photosystem II (PSII), core antenna protein expression, photosynthetic enzyme activities, and chloroplast ultrastructure were investigated in Nanjing 5718 from full expansion of flag leaves at the beginning of booting to 35 days after flowering. The results showed the pigment contents of the leaves in Nanjing 5718 were higher, which were close to male parent Yanjing 608. The net photosynthetic rates, dry weight, and PSII electron transfer activities of flag leaves at the late growth stage were significantly higher in Nanjing 5718 than those in parents and Huaidao 5. The light energy conversion performance of PSII was superior. The core antenna protein CP43 and CP47 were more stable under strong light and high temperature, and their adjustment ability of Nanjing 5718 was better than that of parents and Huaidao 5. In addition, the activities of RuBP carboxylase in flag leaves were higher, the contents of photosynthetic products were higher, the chloroplast structure was more stable, the senescence characteristics appeared later, and the chloroplast decay rates were slower in Nanjing 5718, compared with parents and Huaidao 5. The results indicated that high photosynthetic performance of flag leaves was the basis for the formation of high yield characteristics of super rice Nanjing 5718 with large panicles. The great activity and function of photosystem proteins were main factors of improving leaf photosynthesis, and the stability of chloroplast structure could provide powerful support for high photosynthetic efficiency of leaves.

Key words: rice, high yield, photosynthetic physiological, PSII, chloroplast ultrastructure

表1

供试品种的产量性状"

品种
Variety
穗数
No. of panicles
(×104 hm-2)
每穗粒数
Spikelets per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
实际产量
Harvest yield
(kg hm-2)
南粳5718 Nanjing 5718 351.0 a 143.3 a 88.9 ab 28.3 a 11,392.7 a
盐粳608 Yanjing 608 253.5 c 141.3 a 80.8 b 28.0 a 8982.9 c
宁7022 Ning 7022 319.8 b 112.4 b 91.9 a 27.4 a 10,692.0 b
淮稻5号 Huaidao 5 362.7 a 118.8 b 84.2 b 25.7 b 9760.5 c

图1

不同生育时期茎叶重、穗干重和总干物重的品种间差异 * 表示与淮稻5号相比差异达0.05显著水平。"

图2

供试品种不同生育时期茎叶干重、穗干重和总干物重的变化 * 表示与淮稻5号相比差异达0.05显著水平。"

图3

南粳5718与其父母本和对照品种SPAD值和剑叶净光合速率的差异 * 表示与淮稻5号相比差异达0.05显著水平。"

图4

南粳5718与其父母本和对照品种在不同时期剑叶叶绿素荧光动力学参数的差异 ABS/RC: 单位反应中心吸收的光能, TR0/RC: 单位反应中心捕获的光能, ET0/RC: 单位反应中心用于电子传递的能量, DI0/RC: 单位反应中心耗散的能量, ABS/CS0: 单位截面吸收的光能, TR0/CS0: 单位截面捕获的光能, ET0/CS0: 单位截面用于电子传递的能量, DI0/CS0: 单位截面热耗散的能量, PIabs: 光合性能指数, Fv/Fm: 最大光化学效率. * 表示与淮稻5号相比差异达0.05显著水平."

图5

南粳5718与其父母本和对照品种在开花后21 d、花后35 d剑叶CP43和CP47蛋白表达量的比较 A: 不同品种剑叶CP43在花后21 d、花后35 d上午08:00、中午12:00、下午18:00蛋白表达量; B: 不同品种剑叶CP47在花后21 d、花后35 d上午08:00、中午12:00、下午18:00蛋白表达量。"

图6

南粳5718与其父母本和对照品种在花后21 d、花后35 d剑叶RuBp羧化酶活性和光合产物含量的比较 *表示南粳5718与其他品种相比在0.05水平上差异显著。"

图7

南粳5718及其亲本和对照品种在花后21 d和35 d剑叶叶绿体超微结构的比较 a: 南粳5718, 花后21 d; b: 盐粳608, 花后21 d; c: 宁7022, 花后21 d; d: 淮稻5号, 花后21 d; e: 南粳5718, 花后35 d; f: 盐粳608, 花后35 d; g: 宁7022, 花后35 d; h: 淮稻5号, 花后35 d; G: 基粒类囊体; ST: 基质类囊体; O: 噬锇滴。"

[1] 张亚东, 朱镇, 陈涛, 赵庆勇, 冯凯华, 姚姝, 周丽慧, 赵凌, 赵春芳, 梁文化, 路凯, 王才林. 优良食味粳稻南粳 5718 的选育及主要特征特性. 中国稻米, 2020, 26(4): 100-102.
doi: 10.3969/j.issn.1006-8082.2020.04.023
Zhang Y D, Zhu Z, Chen T, Zhao Q Y, Feng K H, Yao S, Zhou L H, Zhao L, Zhao C F, Liang W H, Lu K, Wang C L. Breeding and Characteristics of a new japonica rice variety Nangeng 5718 with good eating quality. Chin Rice, 2020, 26(4): 100-102. (in Chinese with English abstract)
[2] 杨建昌, 朱庆森, 王志琴, 郎有忠. 亚种间杂交稻光合特性及物质积累与运转的研究. 作物学报, 1997, 23: 82-88.
Yang J C, Zhu Q S, Wang Z Q, Lang Y Z. Photosynthetic characteristics, dry-matter accumulation and its translocation in intersubspecific hybrid rice. Acta Agron Sin, 1997, 23: 82-88. (in Chinese with English abstract)
[3] 汤亮, 朱相成, 曹梦莹, 曹卫星, 朱艳. 水稻冠层光截获、光能利用与产量的关系. 应用生态学报, 2012, 23: 1269-1276.
Tang L, Zhu X C, Cao M Y, Cao W X, Zhu Y. Relationships of rice canopy PAR interception and light use efficiency to grain yield. Chin J Appl Ecol, 2012, 23: 1269-1276. (in Chinese with English abstract)
[4] 高丽敏. 氮素供应对水稻光合氮素利用率的影响机制研究. 南京农业大学博士学位论文, 江苏南京, 2016.
Gao L M. Studies on Mechanisms of the Effects of Nitrogen Supply on Photosynthetic Nitrogen Use Efficiency of Rice Plants. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract)
[5] 张军, 刘忠红, 周冬冬, 方书亮, 周年兵, 李必忠, 张永进. 机插条件下南粳5718生育特性及稻米品质特征. 中国稻米, 2020, 26(4): 81-83.
doi: 10.3969/j.issn.1006-8082.2020.04.018
Zhang J, Liu Z H, Zhou D D, Fang S L, Zhou N B, Li B Z, Zhang Y J. Growth and quality characteristics of Nanjing 5718 under mechanical transplanting. Chin Rice, 2020, 26(4): 81-83. (in Chinese with English abstract)
[6] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47: 2232-2249.
doi: 10.3724/SP.J.1006.2021.02086
Huang H, Jiang H X, Liu G M, Yuan J Q, Wang Y, Zhao C, Wang W L, Huo Z Y, Xu K, Dai Q G, Zhang H C, Li D J, Liu G L. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agron Sin, 2021, 47: 2232-2249. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02086
[7] Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, eds. Probing Photosynthesis: Mechanisms, Regulation and Adaptation. London: Taylor and Francis Press, 2000. pp 445-483.
[8] Strasser R J, Tsimilli-Micheal M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G C, Govindjee, eds. Advances in Photosynthesis and Respiration. Dordrecht: Springer-Verlag Press, 2004. pp 321-326.
[9] Wang Q, Zuo Z C, Wang X, Gu L F, Yoshizumi T, Yang Z H, Yang L, Liu Q, Liu W, Han Y J, Kim J I, Liu B, Wohlschlegel J A, Matsui M, Oka Y, Lin C T. Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science, 2016, 354: 343-346.
pmid: 27846570
[10] Smith A M, Zeeman S C, Thorneycroft D, Smith S M. Starch mobilization in leaves. J Exp Bot, 2003, 54: 577-583.
doi: 10.1093/jxb/erg036
[11] Zeeman S C, Smith S M, Smith A M. The diurnal metabolism of leaf starch. Biochem J, 2007, 401: 13-28
doi: 10.1042/BJ20061393
[12] 许大全, 陈根云. 关于光合作用一些基本概念的思考. 植物生理学报, 2016, 52: 975-978.
Xu D Q, Chen G Y. Thinking about the fundamental concepts of photosynthesis. Plant Physiol J, 2016, 52: 975-978. (in Chinese with English abstract)
[13] 吕川根, 李霞, 陈国祥. 超级杂交稻两优培九高产的光合特性及其生理基础. 中国农业科学, 2017, 50: 4055-4070.
Lyu C G, Li X, Chen G X. Photosynthetic characteristics and its physiological basis of super high-yielding hybrid rice Liangyoupeijiu. Sci Agric Sin, 2017, 50: 4055-4070. (in Chinese with English abstract)
[14] Ye Y S, Liang X Q, Chen Y X, Liu J, Gu J T, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res, 2013, 144: 212-224.
doi: 10.1016/j.fcr.2012.12.003
[15] Ambavaram M M R, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun, 2014, 5: 20-29.
[16] 戚昌瀚. 水稻品种的库源关系与调节对策简论. 江西农业大学学报, 1993, 15(3): 1-5.
Qi C H. Approach to the optimizing control of the relationship of the sink-source in rice varieties. Acta Agric Univ Jiangxi, 1993, 15(3): 1-5. (in Chinese with English abstract)
[17] 马均, 朱庆森, 马文波, 田彦华, 杨建昌, 周开达. 重穗型水稻光合作用、物质积累与运转的研究. 中国农业科学, 2003, 36: 375-381.
Ma J, Zhu Q S, Ma W B, Tian Y H, Yang J C, Zhou K D. Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice. Sci Agric Sin, 2003, 36: 375-381. (in Chinese with English abstract)
[18] 曹树青, 翟虎渠, 杨图南, 张荣铣, 匡廷云. 水稻种质资源光合速率及光合功能期的研究. 中国水稻科学, 2001, 15: 29-34.
Cao S Q, Zhai H Q, Yang T N, Zhang R X, Kuang T Y. Studies on Photosynthetic rate and function duration of rice germplasm resources. Chin J Rice Sci, 2001, 15: 29-34. (in Chinese with English abstract)
[19] 姜倩倩, 刘超, 胡正华, 于凌飞, 杨再强, 陈书涛. 不同CO2浓度升高和氮肥水平对水稻叶绿素荧光特性的影响. 生态学报, 2021, 41: 4953-4962.
Jiang Q Q, Liu C, Hu Z H, Yu L F, Yang Z Q, Chen S T. Effects of different levels of elevated CO2 concentration and nitrogen fertilization on chlorophyll fluorescence characteristics of rice. Acta Ecol Sin, 2021, 41: 4953-4962. (in Chinese with English abstract)
[20] 魏晓东, 陈国祥, 施大伟, 刘丹, 唐加红, 李霞. 干旱胁迫对银杏叶片光合系统II荧光特性的影响. 生态学报, 2012, 32: 7492-7500.
Wei X D, Chen G X, Shi D W, Liu D, Tang J H, Li X. Effects of drought on fluorescence characteristics of photosystem II in leaves of Ginkgo biloba. Acta Ecol Sin, 2012, 32: 7492-7500. (in Chinese with English abstract)
[21] 魏晓东, 李霞, 郭士伟, 陈平波. 氮素水平对转C4光合基因水稻花期剑叶PSII荧光特性的影响. 华北农学报, 2013, 28(1): 193-200.
Wei X D, Li X, Guo S W. Chen P B. Responses of chlorophyll fluorescence characteristics to nitrogen in flag leaves of C4 photosynthetic enzymes transgenic rice during the reproductive stage. Acta Agric Boreali-Sin, 2013, 28(1): 193-200. (in Chinese with English abstract)
[22] 许大全. 光系统II反应中心的可逆失活其生理意义. 植物生理学通讯, 1999, 35: 273-276.
Xu D Q. Reversible inactivation of photosystem II reaction centers and its physiological significance. Plant Physiol Commun, 1999, 35: 273-276. (in Chinese with English abstract)
[23] 耿庆伟, 邢浩, 翟衡, 蒋恩顺, 杜远鹏. 臭氧胁迫下不同光强与温度处理对‘赤霞珠’葡萄叶片PSII光化学活性的影响. 中国农业科学, 2019, 52: 1183-1191.
Geng Q W, Xing H, Zhai H, Jiang E S, Du Y P. Effects of different light intensity and temperature on PSII photochemical activity in ‘Cabernet Sauvignon’ grape leaves under ozone stress. Sci Agric Sin, 2019, 52: 1183-1191. (in Chinese with English abstract)
[24] Bricker T M. The structure and function of CPa-1 and CPa-2 in photosystem II. Photosyn Res, 1990, 24: 1-13
doi: 10.1007/BF00032639
[25] 王梅, 单际修, 钟泽璞, 李良璧, 匡廷云. 光系统II核心天线复合物CP43和CP47结构与功能研究进展. 植物学通报, 2000, 17: 141-149.
Wang M, Shan J X, Zhong Z P, Li L B, Kuang T Y. Advances in the research of structure and function of photosystem II core antenna complexes CP43 and CP47. Chin Bull Bot, 2000, 17: 141-149. (in Chinese with English abstract)
[26] Bassi R, Hoyer-Hansen G, Barbato R. Chlorophyll proteins of the photosystem II antenna system. J Biol Chem, 1987, 262: 13333-13341.
pmid: 3308877
[27] 武立权, 尤翠翠, 柯建, 黄义德. 高温对水稻黄叶突变体剑叶光合特性和叶绿体超微结构的影响. 西北植物学报, 2012, 32: 2264-2269.
Wu L Q, You C C, Ke J, Huang Y D. Response of high- temperature stress on photosynthetic characteristics and chloroplast ultrastructure of flag leaves in Xantha rice mutant. Acta Bot Boreali-Occident Sin, 2012, 32: 2264-2269. (in Chinese with English abstract)
[28] 肖华贵, 杨焕文, 饶勇, 杨斌, 朱英, 张文龙. 甘蓝型油菜黄化突变体的叶绿体超微结构、气孔特征参数及光合特性. 中国农业科学, 2013, 46: 715-727.
Xiao H G, Yang H W, Rao Y, Yang B, Zhu Y, Zhang W L. Analysis of chloroplast ultrastructure, stomatal characteristic parameters and photosynthetic characteristics of chlorophyll reduced mutant in Brassica napus. Sci Agric Sin, 2013, 46: 715-727. (in Chinese with English abstract)
[29] 王复标, 黄福灯, 程方民, 李兆伟, 胡东维, 潘刚, 毛愉婵. 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察. 作物学报, 2012, 38: 871-879.
Wang F B, Huang F D, Cheng F M, Li Z W, Hu D W, Pan G, Mao Y C. Photosynthesis and chloroplast ultra-structure characteristics of flag leaves for a premature senescence rice mutant. Acta Agron Sin, 2012, 38: 871-879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00871
[30] Moss D N. Studies on increasing photosynthesis in crop plants. In: Burris R H, Black C C, eds. CO2 Metabolism and Plant Productivity. Baltimore: University Park Press, 1976.
[31] Good N E, Bell D H. Photosynthesis, plant productivity, and crop yield. In: Caarlson P S, ed. The Biology of Crop Productivity. New York: Academic Press, 1980.
[32] 许大全, 沈允钢. 作物高产高效生理学研究进展. 北京: 科学出版社, 1994.
Xu D Q, Shen Y G. Research Progress in High Yield and High Efficiency Physiology of Crops. Beijing: Science Press, 1994. (in Chinese)
[33] 马文波, 马均, 明东风, 许凤英, 严志彬, 孙晓辉. 不同穗重型水稻品种剑叶光合特性的研究. 作物学报, 2003, 29: 236-240.
Ma W B, Ma J, Ming D F, Xu F Y, Yan Z B, Sun X H. Studies on the photosynthetic characteristics of the flag leaf of different panicle weight types of rice. Acta Agron Sin, 2003, 29: 236-240. (in Chinese with English abstract)
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[4] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[5] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[6] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[7] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[8] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[9] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[10] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[11] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[12] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[13] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[14] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[15] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .