作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3045-3056.doi: 10.3724/SP.J.1006.2022.12080
陶亚军1,3(), 朱静妍2, 王军1,3, 范方军1,3, 许扬1,3, 李文奇1,3, 王芳权1,3, 陈智慧1,3, 蒋彦婕1,3, 朱建平1,3, 李霞1,3, 杨杰1,3()
TAO Ya-Jun1,3(), ZHU Jing-Yan2, WANG Jun1,3, FAN Fang-Jun1,3, XU Yang1,3, LI Wen-Qi1,3, WANG Fang-Quan1,3, CHEN Zhi-Hui1,3, JIANG Yan-Jie1,3, ZHU Jian-Ping1,3, LI Xia1,3, YANG Jie1,3()
摘要:
氮素是促进水稻物质生产和产量形成的首要因素, 其高效与合理的利用是农业可持续发展的重要保障。培育含有氮高效基因的水稻品种, 充分发挥氮素高效吸收和利用遗传潜力是提高氮肥利用率、减少氮肥施用量的有效途径。本研究从氮素的吸收、转运、再分配和再利用等环节, 选择了OsNR2、OsNPF6.1、OsTCP19、OsLHT1和OsGRF4共5个基因作为水稻氮高效遗传改良的基因组合, 根据已报道的功能位点设计得到与目标基因共分离的基因功能标记, 包括6对等位特异PCR标记和1对InDel标记, 并对70份常规籼稻, 34份常规粳稻和84份太湖资源水稻材料进行了鉴定。结果表明, OsNR2在籼稻中分布较广, OsNPF6.1、OsTCP19、OsGRF4在籼稻中分布较少, 但是均未在常规粳稻中检出; 常规粳稻中仅含有OsLHT1; 同时我们还筛选出2份材料同时含有OsNR2、OsNPF6.1和OsGRF4高效单倍型。本研究开发的功能标记和筛选出的材料为通过分子标记辅助选择方法培育氮高效水稻新品种提供了技术支撑。
[1] | 张超普, 余四斌, 张启发. 绿色超级稻新品种选育研究进展. 生命科学, 2018, 30: 1083-1089. |
Zhang C P, Yu S B, Zhang Q F. Recent advances in green super rice development. Chin Sci Bull, 2018, 30: 1083-1089. (in Chinese with English abstract) | |
[2] |
Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015, 47: 834-838.
doi: 10.1038/ng.3337 |
[3] |
Liu Y, Wang H, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B, Chu C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590: 600-605.
doi: 10.1038/s41586-020-03091-w |
[4] |
Gao Z, Wang Y, Chen G, Zhang A, Yang S, Shang L, Wang D, Ruan B, Liu C, Jiang H, Dong G, Zhu L, Hu J, Zhang G, Zeng D, Guo L, Xu G, Teng S, Harberd N P, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun, 2019, 10: 5207.
doi: 10.1038/s41467-019-13110-8 |
[5] |
Yan M, Fan X, Feng H, Miller A J, Shen Q, Xu G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ, 2011, 34: 1360-1372.
doi: 10.1111/j.1365-3040.2011.02335.x |
[6] |
Xia X, Fan X, Wei J, Feng H, Qu H, Xie D, Miller A J, Xu G. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J Exp Bot, 2015, 66: 317-331.
doi: 10.1093/jxb/eru425 pmid: 25332358 |
[7] |
Guo N, Hu J, Yan M, Qu H, Luo L, Tegeder M, Xu G. Oryza sativa Lysine-Histidine-type Transporter 1 functions in root uptake and root-to-shoot allocation of amino acids in rice. Plant J, 2020, 103: 395-411.
doi: 10.1111/tpj.14742 |
[8] |
Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd N P, Fu X. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018, 560: 595-600.
doi: 10.1038/s41586-018-0415-5 |
[9] |
Tang W, Ye J, Yao X, Zhao P, Xuan W, Tian Y, Zhang Y, Xu S, An H, Chen G, Yu J, Wu W, Ge Y, Liu X, Li J, Zhang H, Zhao Y, Yang B, Jiang X, Peng C, Zhou C, Terzaghi W, Wang C, Wan J. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193 |
[10] |
Xu G, Fan X, Miller A. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450 |
[11] |
Andersen J R, Lubberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554-560.
pmid: 14607101 |
[12] | 方琳, 陶亚军, 张灵, 范方军, 张爱伟, 李文奇, 王芳权, 许扬, 陈智慧, 蒋彦婕, 杨杰, 王军. 水稻氮高效基因NRT1.1B功能标记开发和资源筛选. 分子植物育种, 2020, 18: 7795-7800. |
Fang L, Tao Y J, Zhang L, Fan F J, Zhang A W, Li W Q, Wang F Q, Xu Y, Jiang Y J, Yang J, Wang J. Development of functional marker and screening resources for high nitrogen use efficiency gene NRT1.1B in rice. Mol Plant Breed, 2020, 18: 7795-7800. (in Chinese with English abstract) | |
[13] | 王军, 杨杰, 陈志德, 仲维功. 稻香米基因标记的开发与应用. 分子植物育种, 2008, 6: 1209-1212. |
Wang J, Yang J, Chen Z D, Zhong W G. Development and application of fragrance gene markers in rice. Mol Plant Breed, 2008, 6: 1209-1212. (in Chinese with English abstract) | |
[14] | 王军, 赵婕宇, 许扬, 范方军, 朱金燕, 李文奇, 王芳权, 费云燕, 仲维功, 杨杰. 水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用. 作物学报, 2018, 44: 1612-1620. |
Wang J, Zhao J Y, Xu Y, Fan F J, Zhu J Y, Li W Q, Wang F Q, Fei Y Y, Zhong W G, Yang J. development and application of functional markers for rice blast resistance gene Bsr-d1 in rice. Acta Agron Sin, 2018, 44: 1612-1620. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01612 |
|
[15] | 王芳权, 陈智慧, 许扬, 王军, 李文奇, 范方军, 陈丽琴, 陶亚军, 仲维功, 杨杰. 水稻广谱抗稻瘟病基因PigmR功能标记的开发及应用. 中国农业科学, 2019, 52: 955-967. |
Wang F Q, Chen Z H, Xu Y, Wang J, Li W Q, Fan F J, Chen L Q, Tao Y J, Zhong W G, Yang J. Development and application of the functional marker for the broad-spectrum blast resistance gene PigmR in rice. Sci Agric Sin, 2019, 52: 955-967. (in Chinese with English abstract) | |
[16] | 陈智慧, 王芳权, 许扬, 王军, 李文奇, 范方军, 仲维功, 杨杰. 软米基因Wx-mp在部分粳稻品种资源中的分布. 植物遗传资源学报, 2019, 20: 975-981. |
Chen Z H, Wang F Q, Xu Y, Wang J, Li W Q, Fan F J, Zhong W G, Yang J. The distribution of low amylose content allele Wx-mp in japonica rice. J Plant Genet Res, 2019, 20: 975-981. (in Chinese with English abstract) | |
[17] |
刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014, 40: 1999-2007.
doi: 10.3724/SP.J.1006.2014.01999 |
Liu L J, Wang K J, Bian J L, Xiong Y W, Chen L, Wang Z Q, Yang J C. Differences in yield response to nitrogen fertilizer among rice cultivars andtheir relationship with root morphology and physiology. Acta Agron Sin, 2014, 40: 1999-2007 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01999 |
|
[18] |
Song M, Fan X, Chen J, Qu H, Luo L, Xu G. OsNAR2.1 Interaction with OsNIT1 and OsNIT2 functions in root-growth responses to nitrate and ammonium. Plant Physiol, 2020, 183: 289-303.
doi: 10.1104/pp.19.01364 pmid: 32071150 |
[19] |
Huang S, Liang Z, Chen S, Sun H, Fan X, Wang C, Xu G, Zhang Y. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiol, 2019, 180: 882-895.
doi: 10.1104/pp.19.00142 |
[20] |
Li C, Tang Z, Wei J, Qu H, Xie Y, Xu G. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J Genet Genomics, 2016, 43: 639-649.
doi: 10.1016/j.jgg.2016.11.001 |
[21] |
Ranathunge K, El-Kereamy A, Gidda S, Bi Y, Rothstein S. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J Exp Bot, 2014, 65: 965-979.
doi: 10.1093/jxb/ert458 pmid: 24420570 |
[22] |
Tang Z, Fan X, Li Q, Feng H, Miller A J, Shen Q, Xu G. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol, 2012, 160: 2052-2063.
doi: 10.1104/pp.112.204461 pmid: 23093362 |
[23] |
Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller A J, Xu G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA, 2016, 113: 7118-7123.
doi: 10.1073/pnas.1525184113 |
[24] |
Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T. Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol, 2013, 54: 934-943.
doi: 10.1093/pcp/pct046 pmid: 23509111 |
[25] |
Ohashi M, Ishiyama K, Kojima S, Kojima M, Sakakibara H, Yamaya T, Hayakawa T. Lack of cytosolic glutamine synthetase1;2 activity reduces nitrogen-dependent biosynthesis of cytokinin required for axillary bud outgrowth in rice seedlings. Plant Cell Physiol, 2017, 58: 679-690.
doi: 10.1093/pcp/pcx022 pmid: 28186255 |
[26] |
Yang X, Nian J, Xie Q, Feng J, Zhang F, Jing H, Zhang J, Dong G, Liang Y, Peng J, Wang G, Qian Q, Zuo J. Rice Ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Mol Plant, 2016, 9: 1520-1534.
doi: 10.1016/j.molp.2016.09.004 |
[27] |
Zeng D D, Qin R, Li M, Alamin M, Jin X L, Liu Y, Shi C H. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Mol Genet Genomics, 2017, 292: 385-395.
doi: 10.1007/s00438-016-1275-z |
[1] | 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128. |
[2] | 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96. |
[3] | 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220. |
[4] | 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264. |
[5] | 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324. |
[6] | 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338. |
[7] | 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389. |
[8] | 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420. |
[9] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[10] | 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027. |
[11] | 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040. |
[12] | 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133. |
[13] | 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065. |
[14] | 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582. |
[15] | 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842. |
|