欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3057-3070.doi: 10.3724/SP.J.1006.2022.11115

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

栽培黑麦光敏色素PHYAPHYBPHYC基因转录丰度对不同光质处理的响应

杨陆浩1(), 王立建1,2(), 孙广华1, 王少瓷1, 崔连花1, 陈昌1, 宋梅芳3, 张艳培1, 姜良良1(), 杨建平1(), 王晨阳1()   

  1. 1河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室和作物分子育种国家工程中心, 河南郑州 450046
    2河南警察学院, 河南郑州 450046
    3北京市辐照中心, 北京100875
  • 收稿日期:2021-12-22 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-20
  • 通讯作者: 姜良良,杨建平,王晨阳
  • 作者简介:杨陆浩, E-mail: yangluhao226@163.com;
    王立建, E-mail: wanglijian2012@163.com第一联系人:

    **同等贡献

  • 基金资助:
    2022年拉萨市区域科技协同创新专项(QYXTZX-LS2022-01);国家自然科学基金项目(31871709);北京市自然科学基金(重点)项目(6151002);河南农业大学青年英才项目(30501038);河南农业大学青年英才项目(30500823)

Transcription abundances of PHYA, PHYB, and PHYC genes in response to different light treatments in Secale cereale

YANG Lu-Hao1(), WANG Li-Jian1,2(), SUN Guang-Hua1, WANG Shao-Ci1, CUI Lian-Hua1, CHEN Chang1, SONG Mei-Fang3, ZHANG Yan-Pei1, JIANG Liang-Liang1(), YANG Jian-Ping1(), WANG Chen-Yang1()   

  1. 1College of Agronomy / State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
    2Henan Police College, Zhengzhou 450046, Henan, China
    3Beijing Radiation Center, Beijing Academy of Science and Technology, Beijing 100875, China
  • Received:2021-12-22 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-20
  • Contact: JIANG Liang-Liang,YANG Jian-Ping,WANG Chen-Yang
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Lhasa Regional Science and Technology Collaborative Innovation Project in 2022(QYXTZX-LS2022-01);National Natural Science Foundation of China(31871709);Key Project of Beijing Natural Science Foundation(6151002);Young Talents Project of Henan Agricultural University(30501038);Young Talents Project of Henan Agricultural University(30500823)

摘要:

栽培黑麦(Secale cereal L.)属于禾本科黑麦属, 是一种有价值的粮食和饲料作物, 对生物和非生物胁迫具有很高的抗性。黑麦1RS染色体臂携带的抗病基因通过染色体易位转入小麦基因组, 1BL/1RS易位系在世界范围内提高了小麦对白粉病和条锈病抗性。光敏色素是一类红光/远红光受体, 调控植物的种子萌发、株高、避荫性反应和开花等适应性反应。本试验克隆了黑麦光敏色素基因(phytochrome) ScPHYAScPHYBScPHYC, 利用荧光定量PCR (qRT-PCR)方法分析ScPHYs在不同组织中的转录丰度, 及其在幼苗期对不同光质和光周期处理的响应。研究发现, 黑麦与拟南芥、水稻及普通小麦等植物的phys蛋白具有相似的结构域, 且与小麦、水稻等禾本科植物的phys蛋白有较高的氨基酸序列一致性, 暗示它们可能具有相似的功能。ScPHYs在根中的表达水平最高, 并在黑暗和远红光条件下的转录丰度较高; 由黑暗转红光、远红光、蓝光和白光条件下三者的表达模式略有不同。在光周期反应中, 长日照条件下三者的表达模式相似, 短日照条件下三者的表达模式各不相同。以上结果表明, ScPHYs可能在黑麦光形态建成中发挥重要功能。本文通过对3个黑麦光敏色素基因的转录分析, 为研究黑麦的光信号系统提供参考, 同时也为进一步探究光敏色素在黑麦遗传改良及分子育种中的应用提供依据。

关键词: 黑麦, 光敏色素, 基因克隆, 光处理, 转录丰度

Abstract:

Cultivated rye (Secale cereal L.), belonging to the rye genus of the poaceae family, is a valuable food and feed crop that is highly resistant to biotic and abiotic stresses. The 1BL/1RS translocation line has improved wheat resistance to powdery mildew and stripe rust worldwide. Phytochromes are an red/far-red receptors that regulate seed germination, plant height, shade avoidance response, flowering, and other adaptive responses in plants. In this study, three phytochrome genes, ScPHYA, ScPHYB, and ScPHYC were cloned. The transcriptional abundance of ScPHYs in different tissues and light treatments was analyzed by qRT-PCR. The results showed that phys of rye had similar domains with those of Arabidopsis, rice, and wheat, and had higher amino acid sequence consistency with those of wheat and rice, suggesting that they might have similar function. The transcriptional abundances of ScPHYs were the highest in roots, and higher under dark and far-red light than other continuous light conditions, while the relative expression patterns of the three genes were slightly different in the transformation from dark to red light, far-red light, blue light, and white light. In photoperiodic response, the relative expression patterns of the three genes were similar under long-day conditions, but different under short-day conditions. These results indicated that ScPHYs may play an important role in the photomorphogenesis of rye. The transcriptional analysis of three rye phytochrome genes provides a reference for the study of rye optical signal system and a basis for exploring the application of phytochrome in rye genetic improvement and molecular breeding.

Key words: Secale cereale, phytochromes, gene cloning, light treatment, transcription abundance

表1

基因克隆所用引物"

基因名称
Gene name
基因编号
Accession number
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
ScPHYA ScWN4R01G009900 CGGGGGACTCTTGACCATGGCA ATGTCTTCCTCAATGCCTGCTT AGTTCTTCTCCTTTACTAGT GTGCCCCATTGCCGTT
ScPHYB ScWN7R01G236700 CGGGGGACTCTTGACCATGGCA ATGGCCTCGGGAAGCCG AGTTCTTCTCCTTTACTAGT GCTCCGATCCCTACTTTCT
ScPHYC ScWN4R01G173600 CGGGGGACTCTTGACCATGGCA
ATGTCGTCGTCGCGGTCC
AGTTCTTCTCCTTTACTAGT
GAAGTTGCTCTTGCTCGTC

表2

qRT-PCR所用引物"

基因名称
Gene name
基因编号
Accession number
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
ScPHYA ScWN4R01G009900 CAGTGAAGTTCTCTCCTGTTG TCCCTGGTGCTTGATCC
ScPHYB ScWN7R01G236700 GCTATGGGCAAATCATTAG TGGTCCTTTAGACTGCTCTGAC
ScPHYC ScWN4R01G173600 GCAAGGAACCGAAGAGCAA CCTGTCAAATCTTGTGCTACG
ScActin ScWN1R01G374800 CGTGTTGGATTCTGGTGATG AGCCACATATGCGAGCTTCT

图1

光敏色素蛋白的系统发育分析 在Uniprot网站和WheatOmics网站获得全长氨基酸序列, 利用 MEGA Version 10对其进行系统发育分析。AtphyA: 拟南芥, P14712; AtphyB: 拟南芥, P14713; AtphyC: 拟南芥, P14714; OsphyA: 水稻, A2XLG5; OsphyB: 水稻, A2XFW2; OsphyC: 水稻, A2XM23; ZmphyA1: 玉米, P19862; ZmphyA2: 玉米, Q53ZT7; ZmphyB1: 玉米, Q6XFQ3; ZmphyB2: 玉米, Q6XFQ2; ZmphyC1: 玉米, Q6XFQ1; ZmphyC2: 玉米, Q6XFQ0; SbphyA: 高粱, Q53YS9; SbphyB: 高粱, Q6S525; SbphyC: 高粱, P93528; TaphyA: 小麦, Q5K5K6; TaphyB: 小麦, A9JR06; TaphyC: 小麦, Q8VWN1; ScphyA: 黑麦, ScWN4R01G009900; ScphyB: 黑麦, ScWN7R01G236700; ScphyC: 黑麦, ScWN4R01G173600; HvphyA: 大麦, Q2I7M3; HvphyB: 大麦, Q2I7M0; HvphyC: 大麦, Q2I714; AetphyA: 粗山羊草, A0A453H8S4; AetphyB: 粗山羊草, A0A453I867; AetphyC: 粗山羊草, A0A453LU83; TuphyA: 乌拉尔图小麦, M8B484; TuphyB: 乌拉尔图小麦, TuG1812G0400002191; TuphyC: 乌拉尔图小麦, M8A187。"

图2

黑麦、拟南芥、水稻和小麦phyA蛋白的氨基酸序列比对和结构域分析 使用DNAMAN version 9、Pfam网站和WheatOmics网站进行氨基酸序列多重比对及蛋白结构域分析。AtphyA: 拟南芥, P14712; OsphyA: 水稻, A2XLG5; TaphyA: 小麦, Q5K5K6; ScphyA: 黑麦, ScWN4R01G009900。"

图3

黑麦、拟南芥、水稻和小麦phyB蛋白的氨基酸序列比对和结构域分析 使用DNAMAN version 9、Pfam网站和WheatOmics网站进行氨基酸序列多重比对及蛋白结构域分析。AtphyB: 拟南芥, P14713; OsphyB: 水稻, A2XFW2; TaphyB: 小麦, A9JR06; ScphyB: 黑麦, ScWN7R01G236700。"

图4

黑麦、拟南芥、水稻和小麦phyC蛋白的氨基酸序列比对和结构域分析 使用DNAMAN version 9、Pfam网站和WheatOmics网站进行氨基酸序列多重比对及蛋白结构域分析。AtphyC: 拟南芥, P14714; OsphyC: 水稻, A2XM23; TaphyC: 小麦, Q8VWN1; ScphyC: 黑麦, ScWN4R01G173600。"

图5

ScPHYA、ScPHYB及ScPHYC基因在不同部位中的转录丰度分析 以威宁黑麦不同组织为材料, qRT-PCR分析ScPHYA、ScPHYB及ScPHYC的转录丰度。以叶片中ScPHYB转录丰度作为对照(ScPHYB/ScActin设为1), 柱状图表示进行3次独立重复试验后的平均值, 其中, 误差线代表标准差。*: P < 0.05; **: P < 0.01; ***: P < 0.001。"

图6

ScPHYA、ScPHYB及ScPHYC在不同持续光下的转录丰度 威宁黑麦在黑暗(Dk)、红光(R, 22.3 μmol m-2 s-1)、远红光(FR, 1.9 μmol m-2 s-1)、蓝光(B, 13.0 μmol m-2 s-1)和白光(W, 17.0 μmol m-2 s-1)培养箱中生7 d。以黑暗中ScPHYB转录丰度为对照(ScPHYB/ScActin设为1)柱状图表示进行3次独立重复试验后的平均值, 其中, 误差线代表标准差。** P < 0.01; *** P < 0.001。"

图7

ScPHYA、ScPHYB及ScPHYC基因在黑暗到不同光质转换的转录丰度 威宁黑麦幼苗在黑暗(Dk)条件生长7 d, 分别转入红光(R, 22.3 μmol m-2 s-1)、远红光(FR, 1.9 μmol m-2 s-1)、蓝光(B, 13.0 μmol m-2 s-1)和白光(W, 17.0 μmol m-2 s-1) 0、0.25、0.5、1、2、4、8、16和24 h的表达模式, 以黑暗条件下ScPHYB转录丰度为对照(ScPHYB/ScActin设为1), 折线图代表3次实验的平均值, 误差线代表标准差。"

图8

光周期处理下ScPHYA、ScPHYB及ScPHYC的转录丰度 威宁黑麦幼苗在长日照(LD, 16 h光照/8 h)和短日照(SD, 8 h光照/16 h黑暗)条件生长10 d后, 每隔2 h取样。分别以每个基因在长日照和短日照黑暗结束时转录丰度作为对照(设为1), 折线图代表3次实验的平均值, 误差线代表标准差。"

[1] Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis M M, Twardziok S O, Hackauf B, Gordillo A, Wilde P, Schmidt M, Korzun V, Mayer K F, Schmid K, Schön C C, Scholz U. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J, 2017, 89: 853-869.
doi: 10.1111/tpj.13436
[2] Wang C M, Zheng Q, Li L H, Niu Y C, Wang H B, Li B, Zhang X T, Xu Y F, An D G. Molecular cytogenetic characterization of a new T2BL·1RS wheat-rye chromosome translocation line resistant to stripe rust and powdery mildew. Plant Dis, 2009, 93: 124-129.
doi: 10.1094/PDIS-93-2-0124 pmid: 30764098
[3] 罗巧玲, 郑琪, 许云峰, 李立会, 韩方普, 许红星, 李滨, 马朋涛, 安调过. 390份小麦-黑麦种质材料主要农艺性状分析及优异材料的GISH与FISH鉴定. 作物学报, 2014, 40: 1331-1339.
Luo Q L, Zheng Q, Xu Y F, Li L H, Han F P, Xu H X, Li B, Ma P T, An D G. Main agronomic traits of 390 wheat-rye derivatives and GISH/FISH identification of their outstanding materials. Acta Agron Sin, 2014, 40: 1331-1339 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01331
[4] Crespo-Herrera L A, Garkava-Gustavsson L, Åhman I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas, 2017, 154: 14.
doi: 10.1186/s41065-017-0033-5 pmid: 28559761
[5] Rabanus-Wallace M T, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M, Houben A, Mayer K F X, Guo L L, Poland J, Pozniak C J, Walkowiak S, Melonek J, Praz C R, Schreiber M, Budak H, Heuberger M, Steuernagel B, Wulff B, Börner A, Byrns B, Čížková J, Fowler D B, Fritz A, Himmelbach A, Kaithakottil G, Keilwagen J, Keller B, Konkin D, Larsen J, Li Q, Myśków B, Padmarasu S, Rawat N, Sesiz U, Biyiklioglu-Kaya S, Sharpe A, Šimková H, Small I, Swarbreck D, Toegelová H, Tsvetkova N, Voylokov A V, Vrána J, Bauer E, Bolibok-Bragoszewska H, Doležel J, Hall A, Jia J Z, Korzun V, Laroche A, Ma X F, Ordon F, Özkan H, Rakoczy-Trojanowska M, Scholz U, Schulman A H, Siekmann D, Stojałowski S, Tiwari V K, Spannagl M, Stein N. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet, 2021, 53: 564-573.
doi: 10.1038/s41588-021-00807-0 pmid: 33737754
[6] Li G W, Wang L J, Yang J P, He H, Jin H B, Li X M, Ren T H, Ren Z L, Li F, Han X, Zhao X G, Dong L L, Li Y W, Song Z P, Yan Z H, Zheng N N, Shi C L, Wang Z H, Yang S L, Xiong Z J, Zhang M L, Sun G H, Zheng X, Gou M Y, Ji C M, Du J K, Zheng H K, Doležel J, Deng X W, Stein N, Yang Q H, Zhang K P, Wang D W. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet, 2021, 53: 574-584.
doi: 10.1038/s41588-021-00808-z pmid: 33737755
[7] Wang H Y, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003, 8: 172-178.
pmid: 12711229
[8] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281-311.
doi: 10.1146/annurev.arplant.59.032607.092859 pmid: 18257712
[9] 詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012, 45: 3245-3255.
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45: 3249-3255. (in Chinese with English abstract)
[10] Jiao Y L, Lau O S, Deng X W. Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 2007, 8: 217-230.
pmid: 17304247
[11] Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci, 2012, 17: 230-237.
doi: 10.1016/j.tplants.2012.01.007 pmid: 22326562
[12] Lazaro A, Mouriz A, Piñeiro M, Jarillo J A. Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell, 2015, 27: 2437-2454.
doi: 10.1105/tpc.15.00529
[13] Hoecker U, Xu Y, Quail P H. SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant cell, 1998, 10: 19-33.
pmid: 9477570
[14] Shi H, Shen X, Liu R L, Xue C, Wei N, Deng X W, Zhong S W. The red light receptor phytochrome B directly enhances Substrate-E3 ligase interactions to attenuate ethylene responses. Dev Cell, 2016, 39: 597-610.
doi: 10.1016/j.devcel.2016.10.020 pmid: 27889482
[15] Xu P B, Lian H L, Xu F, Zhang T, Wang S, Wang W X, Du S S, Huang J R, Yang H Q. Phytochrome B and AGB 1 coordinately regulate photomorphogenesis by antagonistically modulating PIF3 stability in Arabidopsis. Mol Plant, 2019, 12: 229-247.
doi: 10.1016/j.molp.2018.12.003
[16] Kevei E, Nagy F. Phytochrome controlled signalling cascades in higher plants. Physiol Plant, 2003, 117: 305-313.
pmid: 12654030
[17] Quail P H. Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol, 2002, 14: 180-188.
pmid: 11891117
[18] Lagarias J C, Mercurio F M. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro. J Biol Chem, 1985, 260: 2415-2423.
pmid: 3882693
[19] Matsushita T, Mochizuki N, Nagatani A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature, 2003, 424: 571-574.
doi: 10.1038/nature01837
[20] Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 2006, 57: 837-858.
pmid: 16669784
[21] Franklin K A, Quail P H. Phytochrome functions in Arabidopsis development. J Exp Bot, 2010, 61: 11-24.
doi: 10.1093/jxb/erp304 pmid: 19815685
[22] Li Q Q, Wu G X, Zhao Y P, Wang B B, Zhao B B, Kong D X, Wei H B, Chen C X, Wang H Y. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnol J, 2020, 18: 2520-2532.
doi: 10.1111/pbi.13429
[23] Garg A K, Sawers R J H, Wang H Y, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627-636.
doi: 10.1007/s00425-005-0101-3
[24] He Y N, Li Y P, Cui L X, Xie L X, Zheng C K, Zhou G H, Zhou J J, Xie X Z. Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice. Front Plant Sci, 2016, 7: 1963.
[25] Shamim Z, Rashid B, Rahman S, Husnain T. Expression of drought tolerance in transgenic cotton. ScienceAsia, 2013, 39: 1-11.
doi: 10.2306/scienceasia1513-1874.2013.39.001
[26] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7
[27] Pearce S, Kippes N, Chen A, Debernardi J M, Dubcovsky J. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol, 2016, 16: 141.
doi: 10.1186/s12870-016-0831-3
[28] Chen A, Li C X, Hu W, Lau M Y, Lin H Q, Rockwell N C, Martin S S, Jernstedt J A, Lagarias J C, Dubcovsky J. PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci USA, 2014, 111: 10037-10044.
doi: 10.1073/pnas.1409795111
[29] Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol, 1999, 120: 73-81.
pmid: 10318685
[30] Wies G, Mantese A I, Casal J J, Maddonni G Á. Phytochrome B enhances plant growth, biomass and grain yield in field-grown maize. Ann Bot, 2019, 123: 1079-1088.
doi: 10.1093/aob/mcz015
[31] Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol, 1994, 25: 413-427.
pmid: 8049367
[32] Sharrock R A, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol, 2002, 130: 442-456.
pmid: 12226523
[33] 马燕斌. 小麦和玉米中光敏色素A基因的克隆与功能分析. 四川农业大学博士学位论文, 四川成都, 2010.
Ma Y B. Isolation and Functional Analysis of Phytochrome A Genes in Wheat and Maize. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2010. (in Chinese with English abstract)
[34] 李壮, 马燕斌, 蔡应繁, 吴锁伟, 肖阳, 孟凡华, 付风铃, 黄玉碧, 杨建平. 小麦光敏色素基因TaPhyB3的克隆和表达分析. 作物学报, 2010, 36: 779-787.
doi: 10.3724/SP.J.1006.2010.00779
Li Z, Ma Y B, Cai Y F, Wu S W, Xiao Y, Meng F H, Fu F L, Huang Y B, Yang J P. Cloning and expression analysis of TaPhyB3 in Triticum aestivum. Acta Agron Sin, 2010, 36: 779-787. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00779
[35] Monte E, Alonso J M, Ecker J R, Zhang Y L, Li X, Young J, Austin-Phillips S, Quail P H. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell, 2003, 15: 1962-1980.
doi: 10.1105/tpc.012971
[36] Lee H J, Ha J H, Park C M. Underground roots monitor aboveground environment by sensing stem-piped light. Commun Integr Biol, 2016, 9: e1261769.
[37] Silva-Navas J, Moreno-Risueno M A, Manzano C, Pallero-Baena M, Navarro-Neila S, Téllez-Robledo B, Garcia-Mina J M, Baigorri R, Gallego F J, del Pozo J C. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant J, 2015, 84: 244-255.
doi: 10.1111/tpj.12998
[38] 孙广华. 小麦光敏色素基因家族的克隆、表达分析与功能研究. 河南农业大学硕士学位论文, 河南郑州, 2016.
Sun G H. Cloning,Expression Analysis and Functional Verification of Phytochrome Genes in Common Wheat (Triticum aestivum). MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016. (in Chinese with English abstract)
[39] 陈由, 王亚琴. 水稻光敏色素A基因克隆及其在光形态建成中的作用. 华南师范大学学报, 2014, 46: 71-76.
Chen Y, Wang Y Q. Cloning and function analysis of Rice phytochrome A gene in photomorphogenesis. J South China Norm Univ, 2014, 46: 71-76. (in Chinese with English abstract)
[40] 杨宗举, 闫蕾, 宋梅芳, 苏亮, 孟凡华, 李红丹, 白建荣, 郭林, 杨建平. 玉米光敏色素A1与A2在各种光处理下的转录表达特性. 作物学报, 2016, 42: 1462-1470.
doi: 10.3724/SP.J.1006.2016.01462
Yang Z J, Yan L, Song M F, Su L, Meng F H, Li H D, Bai J R, Guo L, Yang J P. Transcription characteristics of ZmPHYA1 and ZmPHYA2 under different light treatments in maize. Acta Agron Sin, 2016, 42: 1462-1470. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01462
[41] 张易, 杨清, 王全逸, 郭建林, 梁峰. 野生种马铃薯SpPHYB基因的克隆与表达分析. 植物生理学通讯, 2007, 43: 1020-1024.
Zhang Y, Yang Q, Wang Q Y, Guo J L, Liang F. Cloning and expression analysis of SpPHYB gene from Solanum pinnatisectum Dunal. Plant Physiol Commun, 2007, 43: 1020-1024. (in Chinese with English abstract)
[42] 牛骧, 郭林, 杨宗举, 孙蕾, 李红丹, 游光霞, 徐宏, 孟凡华, 佘跃辉, 杨建平. 2个玉米光敏色素C基因的转录丰度对多种光质处理的响应. 中国农业科学, 2017, 50: 2209-2219.
Niu X, Guo L, Yang Z J, Sun L, Li H D, You G X, Xu H, Meng F H, She Y H, Yang J P. Transcription abundances of two phytochrome C in response to different light treatments in Zea mays. Sci Agric Sin, 2017, 50: 2209-2219. (in Chinese with English abstract)
[43] Hofmann N R. Opposites attract: some phytochromes do not form homodimers. Plant Cell, 2009, 21: 698.
doi: 10.1105/tpc.109.210311 pmid: 19286966
[44] Sánchez-Lamas M, Lorenzo C D, Cerdán P D. Bottom-up assembly of the phytochrome network. PLoS Genet, 2016, 12: e1006413.
[1] 王穆穆, 何艳芳, 郑永胜, 王晖, 王丽媛, 王东建, 张晗, 李汝玉. 水稻落粒基因SH8的精细定位与克隆[J]. 作物学报, 2022, 48(8): 1948-1956.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[6] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[7] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[8] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[9] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[10] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[11] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
[12] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[13] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[14] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[15] 李红丹,闫蕾,孙蕾,樊晓聪,陈士瞻,张燕,郭林,游光霞,李庄,杨宗举,苏亮,杨建平. 玉米隐花色素CRY1bCRY2基因转录丰度对不同光质处理的响应[J]. 作物学报, 2018, 44(9): 1290-1300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .