欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 497-510.doi: 10.3724/SP.J.1006.2022.04277

• 耕作栽培·生理生化 • 上一篇    下一篇

灌溉定额和施氮量对机采棉田水分运移及硝态氮残留的影响

尔晨1(), 林涛2,3,4, 夏文1, 张昊1, 徐高羽1, 汤秋香1,*()   

  1. 1新疆农业大学农学院/棉花教育部工程研究中心, 新疆乌鲁木齐 830052
    2新疆农业科学院经济作物研究所, 新疆乌鲁木齐 830091
    3中国农业科学院农业环境与可持续发展研究所, 北京 100081
    4农业农村部荒漠绿洲作物生理生态与耕作重点实验室, 新疆乌鲁木齐 830091
  • 收稿日期:2020-12-16 接受日期:2021-06-16 出版日期:2022-02-12 网络出版日期:2021-07-14
  • 通讯作者: 汤秋香
  • 作者简介:E-mail: 1193270894@qq.com
  • 基金资助:
    本研究由新疆维吾尔自治区科技支疆项目(2017E0251);新疆维吾尔自治区高校科研计划项目(XJEDU20191012);南京农业大学-新疆农业大学联合基金项目(KYYJ201802);新疆维吾尔自治区自然基金面上项目(2018D01A51);新疆维吾尔自治区重大科技专项(2020A01002-4);新疆农业科学院科技创新重点培育专项, 新疆农业科学院农业科技创新平台能力提升建设专项-农业农村部荒漠绿洲作物生理生态与耕作重点实验室开放课题(25107020-202001);新疆维吾尔自治区天山英才人才培养项目联合资助

Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton

ER Chen1(), LIN Tao2,3,4, XIA Wen1, ZHANG Hao1, XU Gao-Yu1, TANG Qiu-Xiang1,*()   

  1. 1College of Agronomy, Xinjiang Agricultural University/Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
    3Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4Key Laboratory of Crop Physiological Ecology and Cultivation in Desert Oasis Region, Ministry of Agriculture and Rural Affairs, Urumqi 830091, Xinjiang, China
  • Received:2020-12-16 Accepted:2021-06-16 Published:2022-02-12 Published online:2021-07-14
  • Contact: TANG Qiu-Xiang
  • Supported by:
    This study was supported by the Xinjiang Uygur Autonomous Region Science and Technology Support Xinjiang Project(2017E0251);the Xinjiang Uygur Autonomous Region University Research project(XJEDU20191012);the Nanjing Agricultural University-Xinjiang Agricultural University Joint Fund Project(KYYJ201802);the General Project of Nature Fund of Xinjiang Uygur Autonomous Region(2018D01A51);the Xinjiang Uygur Autonomous Region Major Science and Technology Project(2020A01002-4);the Xinjiang Academy of Agricultural Sciences and Technology Innovation Key Cultivation Special Project, the Xinjiang Academy of Agricultural Sciences Agricultural Science and Technology Innovation Platform Capacity Enhancement Special Project-Key Laboratory of Crop Physiology, Ecology and Cultivation of Desert Oasis, Ministry of Agriculture Open Project(25107020-202001);the Xinjiang Uygur Autonomous Region Tianshan Talent Training Program

摘要:

水资源短缺和土壤环境污染严重是制约农业可持续健康发展的瓶颈, 迫使农民开发和采用可持续的农业生产技术。水分运动机理和氮肥残留行为是评价干旱地区农业水肥管理水平的依据, 提高水氮利用效率是降低环境污染这一重要科学问题的重要途径。本研究采用裂区试验设计, 以灌溉量为主区, 设2250 (低灌溉量, W1)、3450 (传统灌溉量, W2)和4650 m 3 hm -2 (高灌溉量, W3) 3个灌溉量; 设0 (空白, N1)、300 (传统施肥量, N2)和600 kg hm -2 (高施氮量, N3) 3个纯氮投入量, 在干旱的中国西北内陆棉区开展2年的田间试验, 评估灌溉和施氮策略对水氮运移、籽棉产量、水氮生产效率的影响。结果表明, 灌溉量及水氮耦合效应是影响籽棉产量及灌溉水生产力的影响因素, 其中灌溉量是主效应。2年均值表明, 灌溉量为W1时, 施肥量由N1增加至N3, 生育期0~80 cm平均土壤含水量呈先显著上升后显著下降的趋势, N2和N3处理较N1处理籽棉产量分别提高13.8%和7.6%, 水分利用效率分别提高13.6%和6.8%; 灌溉量为W2和W3时, 施肥量由N1增加至N3, 生育期0~80 cm土层平均含水量无显著差异。N2和N3处理较N1处理籽棉产量分别提高11.6%和12.4%, 水分利用效率分别提高11.4%和11.5%; 随着灌溉量的增加, 0~80 cm土层全生育期含水率总平均值逐渐增大。灌溉量是影响硝态氮在0~40 cm土层积累的主导因素, 而水氮耦合效应是导致硝态氮向下淋溶的主效应。W1灌溉量下, 随着施氮量的增加, 硝态氮在0~40 cm土层大量积累, 而W3灌溉量下, 随着施氮量的增加, 40~60 cm土层硝态氮含量逐渐增加。总的来说, 灌溉量高于3450 m 3 hm -2、施肥高于300 kg hm -2后继续增加水氮投入未能额外增产, 反而可能造成资源浪费和对环境的潜在污染。因此我们建议, 通过水氮优化策略提高资源利用效率, 降低环境污染, 促进农业可持续发展。

关键词: 机采棉, 水氮耦合, 产量, 水分运移, 硝态氮

Abstract:

The shortage of water resources and the excessive investment of fertilizer are the bottlenecks that restrict the sustainable and healthy development of agriculture and force farmers to develop and adopt sustainable production technologies. The mechanism of water movement and the residual behavior of nitrogen fertilizer are important scientific issues to evaluate the level of agricultural water and fertilizer management in arid areas. Improving the water and nitrogen utilization efficiency was an important way to reduce environmental pollution. An experiment was conducted using a split plot design with the main area for total irrigation of 2250 (W1, non-sufficient drip irrigation), 3450 (W2, conventional drip irrigation), 4650 m 3 hm -2 (W3, saturated drip irrigation), and the deputy area of nitrogen (pure N) including 0 (N1, no fertilizer), 300 (N2, conventional fertilization), 600 kg hm -2 (N3, excess fertilization) in arid area of northwest China cotton region from 2018 to 2019. The effects of irrigation and nitrogen levels on water distribution, nitrate nitrogen residue, seed cotton, irrigation water, and N fertilizer productive efficiency were evaluated. The results revealed that irrigation and coupling effects of irrigation and nitrogen levels were the influencing factors on seed cotton and water utilization efficiency, among which irrigation was the main effect. Two-year average values demonstrated that the irrigation was W1, nitrogen fertilization amount increased from N1 to N3, and the average soil moisture content of 0-80 cm during the whole growth period increased first and then decreased. Compared with N1 fertilization application, seed cotton yield was 13.8% and 7.6% higher and irrigation water productive efficiency were 13.6% and 6.8% higher under N2 and N3 fertilization application, respectively. When the irrigation was W2 and W3, the nitrogen fertilization amount increased from N1 to N3, and there was no significant difference in the average soil moisture content of 0-80 cm during the whole growth period. Compared with N1 fertilization application, seed cotton yield was 11.4% and 11.5% higher and irrigation water productive efficiency were 13.6% and 6.8% higher under N2 and N3 fertilization application, respectively. With the increase of irrigation, the total average value of 0-80 cm during the whole growth period gradually increased. Irrigation was the main effect on soil nitrate nitrogen accumulation in the main distribution area of 0-40 cm roots, and coupling effects of irrigation and nitrogen levels was the main factor leading to nitrate nitrogen leaching. When the irrigation was W1, nitrate nitrogen accumulated in the 0-40 cm with the increase of nitrogen. And when the irrigation was W3, nitrate nitrogen accumulated in the 40-60 cm with the increase of nitrogen. In conclusion, if the irrigation was higher than 3450 m 3 hm -2 and nitrogen was higher than 300 kg hm -2, the continued increase of water and nitrogen input failed to increase production, which might result in resource waste and potential pollution to the environment. Therefore, we suggest that water and nitrogen optimization strategies can improve resource utilization efficiency, reduce water and fertilizer input, and healthy development of agriculture.

Key words: machine-harvested cotton, coupling effects of irrigation and nitrogen levels, yield, water distribution, nitrate nitrogen residue

表1

试验土壤基础养分含量"

年份
Year
有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
碱解氮
Alkali-hydrolysable
nitrogen (mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
2018 7.7 0.60 50.3 19.6 108.0
2019 8.3 0.48 58.4 35.4 130.7

表2

试验地播前0~100 cm土层硝态氮和铵态氮含量"

土层
Soil layers
(cm)
2018 2019
硝态氮
NO3--N
铵态氮
NH4+-N
硝态氮
NO3--N
铵态氮
NH4+-N
0-10 33.8 7.2 28.9 6.3
10-20 35.9 6.8 32.7 6.5
20-30 39.7 6.9 39.1 5.4
30-40 40.6 5.7 40.9 4.7
40-50 34.8 5.3 36.1 4.8
50-60 24.8 5.6 20.2 5.1
60-70 33.9 4.7 24.5 4.2
70-80 22.4 5.3 21.6 3.5
80-90 28.2 5.4 23.4 4.6
90-100 24.2 5.1 26.1 3.0

图1

水分测定位点示意图"

表3

不同灌溉施肥组合对棉花产量及水、氮生产效率的影响"

灌溉量
Irrigation rate
(m3 hm-2)
施肥量
Fertilizer rate
(kg hm-2)
生物产量
Dry matter of total biomass
(g plant-1)
籽棉产量
Seed cotton
(kg hm-2)
灌溉水利用效率
Irrigation water productive efficiency
(kg m-3)
氮肥生产效率
N fertilizer productive efficiency
(kg kg-1 N-1)
2018 2019 2018 2019 2018 2019 2018 2019
W1 N1 65.8 c 56.1 d 4213.8 e 4525.0 f 1.9 b 2.5 b
N2 82.1 b 90.3 c 4946.5 cd 4999.6 e 2.2 a 2.8 a 2.2 ab 2.0 b
N3 79.0 bc 56.8 d 4508.4 de 4895.5 e 2.0 b 2.7 a 0.7 c 0.8 d
W2 N1 84.7 b 72.0 d 5098.7 bc 5526.9 d 1.5 d 2.0 d
N2 129.7 a 120.0 a 5540.1 ab 6023.8 c 1.6 cd 2.2 c 1.5 bc 2.1 b
N3 98.0 b 124.1 a 5722.5 a 6131.3 bc 1.7 c 2.2 c 1.4 bc 1.3 c
W3 N1 95.5 b 96.8 b 4990.2 c 5697.4 d 1.1 f 1.5 f
N2 114.2 a 128.9 a 5849.2 a 6294.3 ab 1.3 e 1.7 e 2.9 a 2.5 a
N3 115.2 a 118.1 a 5633.5 a 6374.4 a 1.2 e 1.7 e 1.4 bc 1.4 c
二因素分析 (F值) Two-way ANOVA (F-value)
年份 Year (Y) 61.3*** 29.3*** 3485.8*** 0.1ns
灌溉量 Irrigation rate (W) 89.3*** 678.7*** 3296.6*** 17.2***
施肥量 Fertilizer rate (N) 38.8*** 217.7*** 188.9*** 140.2***
年份×灌溉量 Y×W 2.6* 1.5ns 3.6 ns 2.3ns
年份×施肥量 Y×N 3.7* 1.9ns 4.4* 0.1ns
灌溉量×施肥量 W×N 5.6** 8.1*** 11.8*** 12.1***
年份×灌溉量×施肥量Y×W×N 3.3* 3.9* 2.0ns 4.8*

表4

不同灌溉施肥组合对0~80 cm土层土壤全生育期平均体积含水率的影响"

灌溉量
Irrigation rate
(m3 hm-2)
施肥量
Fertilizer rate
(kg hm-2)
土壤体积含水量 Soil volumetric water content (%)
0-10 (cm) 10-20 (cm) 20-30 (cm) 30-40 (cm) 40-50 (cm) 50-60 (cm) 60-70 (cm) 70-80 (cm) 0-80 (cm) Average
2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
W1 N1 10.3 c 14.3 d 13.2 d 15.7 f 14.8 d 17.1 c 16.7 bc 21.8 ab 18.0 a 23.7 a 19.1 ab 24.6 a 21.6 cd 26.4 d 24.4 cd 24.1 c 17.3 e 20.2 c
N2 12.7 b 16.1 bc 16.1 bc 18.8 de 16.2 c 20.2 bc 16.0 c 21.0 b 16.7 b 23.6 a 18.4 b 25.6 a 21.4 cd 26.0 d 24.0 d 26.0 c 17.7 de 22.2 b
N3 10.2 c 15.3 cd 13.0 d 16.9 ef 14.4 d 17.3 c 15.0 d 16.9 c 17.5 ab 21.9 b 18.4 b 25.6 a 20.8 d 27.3 cd 23.6 d 22.4 c 16.6 f 21.1 c
W2 N1 14.6 a 17.9 a 17.3 a 21.8 abc 16.4 bc 20.3 abc 17.4 ab 23.5 ab 17.6 ab 25.3 a 19.0 ab 26.1 a 21.5 cd 30.2 bcd 25.1 c 35.2 ab 18.6 b 25.0 a
N2 14.1 a 17.9 a 16.3 abc 21.5 abc 16.6 bc 21.7 ab 17.1 bc 22.4 ab 18.0 a 24.8 a 18.3 b 27.1 a 21.1 cd 32.5 ab 24.5 cd 33.9 ab 18.2 bc 25.2 a
N3 12.0 b 17.1 ab 15.7 c 19.5 cd 17.4 ab 23.7 ab 16.8 bc 20.6 b 17.7 a 24.4 a 18.7 ab 26.0 a 21.9 c 33.8 ab 23.9 d 32.2 b 18.0 bcd 24.7 ab
W3 N1 14.5 a 16.9 ab 16.6 abc 21.1 bcd 16.5 bc 19.8 bc 17.1 abc 22.9 ab 18.2 a 24.3 a 19.7 a 25.7 a 25.3 a 35.8 a 29.6 a 37.1 a 19.7 a 25.5 a
N2 14.4 a 17.7 a 17.2 ab 22.1 ab 17.1 abc 22.4 ab 17.5 ab 22.7 ab 18.4 a 25.4 a 19.1 ab 28.0 a 24.6 ab 35.0 ab 28.0 b 34.9 ab 19.5 a 26.0 a
N3 14.9 a 17.7 a 17.4 a 23.4 a 17.6 a 24.3 ab 18.3 a 24.6 a 18.4 a 26.8 a 18.9 ab 27.7 a 24.3 b 32.1 abc 27.8 b 33.6 ab 19.7 a 26.3 a
二因素分析 (F值) Two-way ANOVA (F value)
年份 Year (Y) 287.3*** 225.0*** 84.6*** 138.2*** 87.2*** 83.3*** 220.6*** 148.4*** 407.9***
灌溉量
Irrigation rate (W)
67.5*** 72.9*** 14.7*** 13.5*** 2.5ns 0.7ns 31.9*** 105.9*** 58.0***
施肥量 Fertilizer rate (N) 6.5*** 6.1*** 4.9* 2.7ns 0.0ns 0.1ns 0.0ns 7.1** 1.0ns
年份×灌溉量 Y×W 3.9* 4.8* 1.9ns 1.5ns 0.7ns 0.2ns 8.2** 3.9* 0.2ns
年份×施肥量 Y×N 2.3ns 0.6ns 1.8ns 1.4ns 0.1ns 0.6ns 0.2ns 1.7ns 1.1ns
灌溉量×施肥量 W×N 6.8*** 8.8*** 2.2ns 4.2** 0.3ns 0.0ns 1.7ns 1.0ns 1.0ns
年份×灌溉量×施肥量Y×W×N 0.9ns 0.9ns 0.3ns 0.9ns 0.3ns 0.1ns 1.0ns 0.4ns 0.2ns

图2

不同灌溉施肥组合下土壤水分的时空变化(2018年) SS:苗期; BS:蕾期; FS:开花期; FBS:盛铃期; BOS:吐絮期。处理同表3。"

图3

不同灌溉施肥组合下土壤水分的时空变化(2019年) SS:苗期; BS:蕾期; FS:开花期; FBS:盛铃期; BOS:吐絮期。处理同表3。"

表5

不同灌溉施肥组合对土壤无机氮含量的影响"

生育时期
Growth stages
灌溉量Irrigation rate
(m3 hm-2)
施肥量Fertilizer rate (kg hm-2) 硝态氮
NO3--N (mg kg-1)
铵态氮
NH4+-N (mg kg-1)
无机氮
Inorganic nitrogen (mg kg-1)
2018 2019 2018 2019 2018 2019
开花期
Flowering stage
W1 N1 180.3 bcd 169.0 bc 29.1 a 28.7 bc 209.4 bcd 197.7 bcd
N2 164.7 cd 175.9 bc 26.2 abc 30.7 abc 190.9 cd 206.6 bc
N3 204.0 bc 192.7 b 28.0 a 26.5 cd 232.0 bc 219.2 ab
W2 N1 152.3 d 144.3 c 21.4 bc 31.6 ab 173.7 d 175.9 cd
N2 222.4 ab 233.5 a 20.4 c 21.8 d 242.8 ab 255.3 a
N3 264.8 a 146.9 c 21.0 c 13.7 e 285.7 a 160.6 d
W3 N1 188.2 bcd 82.1 d 27.3 ab 29.5 bc 215.5 bcd 111.6 e
N2 193.3 bcd 175.9 bc 23.5 abc 33.0 ab 216.8 bcd 208.9 bc
N3 215.0 b 178.2 bc 25.5 abc 35.4 a 240.6 ab 213.6 b
盛铃期
Bool stage
W1 N1 193.6 bc 119.9 cd 10.1 d 16.0 e 203.7 bc 135.9 d
N2 278.1 a 195.3 b 21.8 bc 23.1 cd 299.9 a 218.4 b
N3 264.5 a 273.4 a 22.7 ab 21.1 de 287.2 a 294.5 a
W2 N1 163.3 d 102.8 de 23.2 ab 18.5 de 186.5 cd 121.3 d
N2 203.0 b 149.1 c 24.1 ab 27.0 bc 227.0 b 176.0 c
N3 203.0 b 186.1 b 25.1 a 27.3 bc 228.1 b 213.4 b
W3 N1 133.6 e 89.0 e 22.6 ab 29.4 b 156.2 e 118.4 d
N2 166.2 cd 180.0 b 24.4 ab 38.7 a 190.6 cd 218.8 b
N3 146.5 de 181.4 b 19.1 c 34.7 a 165.6 de 216.0 b
吐絮期
Boll opening stage
W1 N1 163.8 bc 125.7 e 21.2 de 21.2 d 185.0 bc 146.9 e
N2 159.4 bc 173.8 bc 23.4 cd 30.8 bc 182.7 bc 204.5 bc
N3 199.6 a 189.5 a 24.0 bc 29.5 bc 223.5 a 219.1 a
W2 N1 116.1 d 108.6 f 27.5 a 24.7 cd 143.6 d 133.2 f
N2 135.7 c 178.4 abc 25.7 ab 20.2 d 161.4 c 198.6 c
N3 150.0 bc 183.3 ab 22.9 cd 32.2 ab 172.9 c 215.5 ab
W3 N1 105.9 d 143.7 d 19.2 e 22.1 d 125.1 d 165.8 d
N2 116.0 d 114.1 ef 27.1 a 23.9 cd 143.1 d 138.0 ef
N3 176.0 b 164.4 c 20.3 e 38.0 a 196.3 b 202.3 c

图4

不同灌溉施肥组合土壤剖面的硝态氮分布(2018年) a:开花期; b:盛铃期; c:吐絮期。处理同表3。"

图5

不同灌溉施肥组合土壤剖面的硝态氮分布(2019年) a:开花期; b:盛铃期; c:吐絮期。处理同表3。"

[1] Hui Y A, Ta S D . Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric Water Manage, 2017,79:193-204.
[2] Malavolta E, Nogueira N G, Heinrichs R, Higashi E N, Rodriguez V, Guerra E . Evaluation of nutritional status of the cotton plant with respect to nitrogen. Commun Soil Sci Plan, 2004,35:1007-1019.
[3] Aujla M S, Thind H S, Buttar G S . Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting. Agric Water Manage, 2005,71:167-179.
[4] 赵士诚, 裴雪霞, 何萍, 张秀芝, 李科江, 周卫, 梁国庆, 金继运 . 氮肥减量后移对土壤氮素供应和夏玉米氮素吸收利用的影响. 植物营养与肥料学报, 2010,16:492-497.
Zhao S C, Pei X X, He P, Zhang X Z, Li K J, Zhou W, Liang G Q, Jin J Y . Effects of reducing and postponing nitrogen application on soil N supply, plant N uptake and utilization of summer maize. Plant Nutr Fert Sci, 2010,16:492-497 (in Chinese with English abstract).
[5] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010,327:1008-1010.
[6] 赵波, 王振华, 李文昊 . 滴灌方式及定额对北疆冬灌棉田土壤水盐分布及次年棉花生长的影响. 农业工程学报, 2016,32(6):139-148.
Zhao B, Wang Z H, Li W H . Effects of winter drip irrigation mode and quota on water and salt distribution in cotton field soil and cotton growth next year in northern Xinjiang. Trans CSAE, 2016,32(6):139-148 (in Chinese with English abstract).
[7] 宰松梅, 仵峰, 范永申, 温季, 韩启彪, 孙浩 . 不同滴灌形式对棉田土壤理化性状的影响. 农业工程学报, 2011,27(12):84-89.
Zai S M, Wu F, Fan Y S, Wen J, Han Q B, Sun H . Effects of drip irrigation patter on soil properties in cotton field. Trans CSAE, 2011,27(12):84-89 (in Chinese with English abstract).
[8] Kang S Z, Hao X M, Du T S, Tong L, Sun X L, Lu H N, Li X L, Huo Z L, Li S E, Ding R S . Improving agricultural water productivity to ensure food security in China under changing environment:from research to practice. Agric Water Manage, 2017,179:5-17.
[9] 罗宏海, 李俊华, 勾玲, 张旺锋, 何在菊, 杨新军 . 膜下滴灌对不同土壤水分棉花花铃期光合生产、分配及籽棉产量的调节. 中国农业科学, 2008,41:1955-1962.
Luo H H, Li J H, Gou L, Zhang W F, He Z J, Yang X J . Regulation of under-mulch-drip irrigation on production and distribution of photosynthetic assimilate and cotton yield under different soil moisture contents during cotton flowering and boll-setting stage. Sci Agric Sin, 2008,41:1955-1962 (in Chinese with English abstract).
[10] 李鹏程, 董合林, 刘爱忠, 刘敬然, 李如义, 孙淼, 李亚兵, 毛树春 . 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响. 植物营养与肥料学报, 2015,21:81-91.
Li P C, Dong H L, Liu A Z, Liu J R, Li R Y, Sun M, Li Y B, Mao S C . Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton. J Plant Nutr Fert, 2015,21:81-91 (in Chinese with English abstract).
[11] 胡晓棠, 陈虎, 王静, 蒙晓斌, 陈福宏 . 不同土壤湿度对膜下滴灌棉花根系生长和分布的影响. 中国农业科学, 2009,42:1682-1689.
Hu X T, Chen H, Wang J, Meng X B, Chen F H . Effects of soil water content on cotton root growth and distribution under mulched drip irrigation. Sci Agric Sin, 2009,42:1682-1689 (in Chinese with English abstract).
[12] 马忠明, 陈娟, 刘婷婷, 吕晓东 . 水氮耦合对固定道垄作栽培春小麦根长密度和产量的影响. 作物学报, 2017,43:1705-1714.
Ma Z M, Chen J, Liu T T, Lyu X D . Effects of water and nitrogen coupling on root length density and yield of spring wheat in permanent raised-bed cropping system. Acta Agron Sin, 2017,43:1705-1714 (in Chinese with English abstract).
[13] Wang C Y, Liu W X, Li Q X, Ma D Y, Lu H F, Feng W, Xie Y X, Zhu Y J, Guo T C . Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res, 2014,165:138-149.
[14] Cabangon R J, Tuong T P, Castillo E G, Bao L X, Lu G A, Wang G H, Cui Y L, Bouman B M, Li Y H, Chen C D, Wang J Z . Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ, 2004,2:195-206.
[15] Du T S, Kang S Z, Zhang J H, Li F S, Hu X T . Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric Water Manage, 2006,84:41-52.
[16] 石洪亮, 严青青, 张巨松, 李春燕, 窦海涛 . 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用. 作物学报, 2018,44:1196-1204.
Shi H L, Yan Q Q, Zhang J S, Li C Y, Dou H T . Compensation effect of nitrogen fertilizer on photosynthetic characteristics and yield during cotton flowering boll-setting stage under non-sufficient drip irrigation. Acta Agron Sin, 2018,44:1196-1204 (in Chinese with English abstract).
[17] 任书杰, 张雷明, 张岁岐, 上官周平 . 氮素营养对小麦根冠协调生长的调控. 西北植物学报, 2003,23:395-400.
Ren S J, Zhang L M, Zhang S Q, Shang-Guan Z P,. The effect of nitrogennutrition on coordinate growth of root and shoot of winter wheat. Acta Bot Boreali-Occident Sin, 2003,23:395-400 (in Chinese with English abstract).
[18] Zhang H X, Chi D C, Wang Q, Fang J, Fang X Y . Yield and quality response of cucumber to irrigation and nitrogen fertilization under subsurface drip irrigation in solar greenhouse. Agric Sci China, 2011,6:921-930.
[19] Rajput T B S, Neelam P . Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric Water Manage, 2006,79:293-311.
[20] 王艳哲, 刘秀位, 孙宏勇, 张喜英, 张连蕊 . 水氮调控对冬小麦根冠比和水分利用效率的影响研究. 中国生态农业学报, 2013,21:282-289.
Wang Y Z, Liu X W, Sun H Y, Zhang X Y, Zhang L R . Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat. Chin J Eco-Agric, 2013,21:282-289 (in Chinese with English abstract).
[21] Janat M . Efficiency of nitrogen fertilizer for potato under fertigation utilizing a nitrogen tracer technique. Commun Soil Sci Plant Anal, 2007,38:2041-2422.
[22] 冯波, 孔令安, 张宾, 司纪升, 李升东, 王法宏 . 施氮量对垄作小麦氮肥利用率和土壤硝态氮含量的影响. 作物学报, 2012,38:1107-1114.
Feng B, Kong L A, Zhang B, Si J S, Li S D, Wang F H . Effect of nitrogen application level on nitrogen use efficiency in wheat and soil nitrate-N content under bed planting condition. Acta Agron Sin, 2012,38:1107-1114 (in Chinese with English abstract).
[23] 王丽英, 武雪萍, 张彦才, 李若楠, 陈丽莉, 陈清 . 适宜施氮量保证滴灌日光温室黄瓜番茄产量降低土壤盐分及氮残留. 农业工程学报, 2015,31(17):91-98.
Wang L Y, Wu X P, Zhang Y C, Li R N, Chen L L, Chen Q . Optimal nitrogen application rate to ensure cucumber and tomato yield with drip irrigation in greenhouse and to reduce soil salinity and nitrate residue. Trans CSAE, 2015,31(17):91-98 (in Chinese with English abstract).
[24] Rochester I O, Halloran J, Maas S, Sands D, Brotherton E . Monitoring nitrogen use efficiency in your region. Aust Cottongrower, 2017,28:24-27.
[25] 张忠学, 陈鹏, 聂堂哲, 姜浩, 孟翔燕, 杨军明 . 不同水氮调控模式对稻田土壤氮素分布与有效性的影响. 农业机械学报, 2018,49(11):210-219.
Zhang Z X, Chen P, Nie T Z, Jiang H, Meng X Y, Yang J M . Effects of different water and nitrogen regulation models on nitrogen distribution and availability in paddy soils. Trans CSAM, 2018,49(11):210-219 (in Chinese with English abstract).
[26] 栗丽, 洪坚平, 王宏庭, 谢英荷, 张璐, 邓树元, 单杰, 李云刚 . 施氮与灌水对夏玉米土壤硝态氮积累、氮素平衡及其利用率的影响. 植物营养与肥料学报, 2010,16:1358-1365.
Li L, Hong J P, Wang H T, Xie Y H, Zhang L, Deng S Y, Shan J, Li Y G . Effects of nitrogen application and irrigation on soil nitrate accumulation, nitrogen balance and use efficiency in summer maize. Plant Nutr Fert Sci, 2010,16:1358-1365 (in Chinese with English abstract).
[27] 高亚军, 李生秀, 李世清, 田霄鸿, 王朝辉, 郑险峰, 杜建军 . 施肥与灌水对硝态氮在土壤中残留的影响. 水土保持学报, 2005,19(6):61-64.
Gao Y J, Li S X, Li S Q, Tian X H, Wang Z H, Zheng X F, Du J J . Effect of fertilization and irrigation on residual nitrate N in soil. J Soil Water Conserv, 2005,19(6):61-64 (in Chinese with English abstract).
[28] Pilbean C J, McNeill A M, Harris H C, Swift R S. Effect of fertilizer rate and form on the recovery of 15N-labelled fertilizer applied to wheat in Syria . J Sci Food Agric, 1997,128:415-424.
[29] 张绍武, 胡田田, 刘杰, 冯璞玉, 张美玲 . 滴灌施肥下水肥用量对温室土壤硝态氮残留的影响. 灌溉排水学报, 2019,38(3):56-63.
Zhang S W, Hu T T, Liu J, Feng P Y, Zhang M L . Soil nitrate residue as affected by the amount of water and nitrogen applications under drip fertigation. J Irrig Draina, 2019,38(3):56-63 (in Chinese with English abstract).
[30] 王晓英, 贺明荣, 刘永环, 张洪华, 李飞, 华芳霞, 孟淑华 . 水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响. 生态学报, 2008,28:685-693.
Wang X Y, He M R, Liu Y H, Zhang H H, Li F, Hua F X, Meng S H . Interactive effects of irrigation and nitrogen fertilizer on nitrogen fertilizer recovery and nitrate-N movement across soil profile in a winter wheat field. Acta Ecol Sin, 2008,28:685-693 (in Chinese with English abstract).
[31] 鲍士旦 . 土壤农化分析. 北京: 中国农业科技出版社, 2000. pp 25-90.
Bao S D. Soil Agro-chemistrical Analysis. Beijing: China Agricultural Science and Technology Press, 2000. pp 25-90(in Chinese).
[32] 王小燕, 褚鹏飞, 于振文 . 水氮互作对小麦土壤硝态氮运移及水、氮利用效率的影响. 植物营养与肥料学报, 2009,15:992-1002.
Wang X Y, Chu P F, Yu Z W . Effects of irrigation and nitrogen interaction on soil NO3 --N transport, nitrogen use efficiency and water use efficiency in wheat . Plant Nutr Fert Sci, 2009,15:992-1002 (in Chinese with English abstract).
[33] 樊小林, 李玲, 何文勤, 尚浩博, 汪沛洪 . 氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应. 植物营养与肥料学报, 1998,4:131-137.
Fan X L, Li L, He W Q, Shang H B, Wang P H . Effect of nitrogen fertilizer, water stress and the genotypes on nitrogen uptake of winter wheat. Plant Nutr Fert Sci, 1998,4:131-137 (in Chinese with English abstract).
[34] 孙文涛, 孙占祥, 王聪翔, 宫亮, 张玉龙 . 滴灌施肥条件下玉米水肥耦合效应的研究. 中国农业科学, 2006,39:563-568.
Sun W T, Sun Z X, Wang C X, Gong L, Zhang Y L . Coupling effect of water and fertilizer on corn yield under drip fertigation. Sci Agric Sin, 2006,39:563-568 (in Chinese with English abstract).
[35] 吴程, 胡顺军, 赵成义 . 塔里木灌区膜下滴灌棉田土壤水分动态与耗水特性. 节水灌溉, 2016, (2):14-17.
Wu C, Hu S J, Zhao C Y . Dynamic change of soil moisture and water consumption of cotton under drip irrigation patterns in Tarim irrigation area. Water Sav Irrig, 2016, ( 2):14-17 (in Chinese with English abstract).
[36] 刘艳, 安景文, 华利民, 解占军, 周建斌, 汪仁 . 氮肥不同施用时期对春玉米早衰的影响. 土壤通报, 2011,42:902-905.
Liu Y, An J W, Hua L M, Xie Z J, Zhou J B, Wang R . Effects of N different fertilization time on early senescence of spring maize. Chin J Soil Sci, 2011,42:902-905 (in Chinese with English abstract).
[37] Liu X J, Ju Z T, Zhang F S, Pan J R, Christie P . Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China plain. Field Crops Res, 2003,83:111-124.
[38] Elrick D E, French L K . Miscible displacement patterns on disturbed and undisturbed soil cores. Soil Sci Soc Am Proc, 1966,30:153-156.
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!