作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1091-1102.doi: 10.3724/SP.J.1006.2022.14063
于春淼1,3(), 张勇2, 王好让3, 杨兴勇2, 董全中2, 薛红2, 张明明2, 李微微2, 王磊2, 胡凯凤2, 谷勇哲3, 邱丽娟1,3,*(
)
YU Chun-Miao1,3(), ZHANG Yong2, WANG Hao-Rang3, YANG Xing-Yong2, DONG Quan-Zhong2, XUE Hong2, ZHANG Ming-Ming2, LI Wei-Wei2, WANG Lei2, HU Kai-Feng2, GU Yong-Zhe3, QIU Li-Juan1,3,*(
)
摘要:
采用中SNP160K芯片对丰收24×通交83-611 F2群体252个植株及其亲本进行基因分型, 构建了一张由5861个SNP标记组成的全长为3661.46 cM的高密度遗传连锁图谱。利用完备区间作图法(ICIM)定位到7个株高QTL, 每个QTL可解释2.56%~10.41%的株高变异。qPH-6-1具有最高的表型变异贡献率和显性效应, 可解释10.41%的株高变异, 加性效应和显性效应分别为-1.72和18.94; qPH-18-1贡献率次之, 可解释9.64%的株高变异, 但具有最高的加性效应, 达-12.42。在F2群体中筛选出11个qPH-6-1和qPH-18-1基因型为Q6Q6/Q18Q18的单株, 平均株高167.00 cm; 筛选出16个基因型为q6q6/q18q18的植株, 平均株高为91.25 cm。在qPH-18-1定位区间内外增加23个SNP标记, 将定位区间由766.97 kb缩小至66.03 kb, 包含8个基因, 结合基因注释和相对表达量差异分析, 推测Glyma.18G279800和Glyma.18G280200可能与大豆的株高相关。本研究为大豆株型的改良提供了分子参考依据和遗传基础。
[1] |
Wilcox J R, Sediyama T. Interrelationships among height, lodging and yield in determinate and indeterminate soybeans. Euphytica, 1981, 30:323-326.
doi: 10.1007/BF00033993 |
[2] | 李灿东, 郭泰, 王志新, 郑伟, 张振宇, 赵海红, 郭美玲, 李志民. 大豆耐密性状与产量的相关分析. 大豆科学, 2019, 38:862-867. |
Li C D, Guo T, Wang Z X, Zheng W, Zhang Z Y, Zhao H H, Guo M L, Li Z M. Correlation analysis between density tolerance and yield of soybean. Soybean Sci, 2019, 38:862-867 (in Chinese with English abstract). | |
[3] |
Mansur L M, Orf J, Lark K G. Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant in breds of soybean [Glycine max.(L). Merr.]. Theor Appl Genet, 1993, 86:914-918.
doi: 10.1007/BF00211041 pmid: 24193997 |
[4] |
Rossi M, Orf J H, Liu L J. Genetic basis of soybean adaptation to north American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses. Theor Appl Genet, 2013, 126:1809-1823.
doi: 10.1007/s00122-013-2094-9 |
[5] |
Kabelka E A, Diers B W, Fehr W R. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44:784-791.
doi: 10.2135/cropsci2004.7840 |
[6] | Diers B W, Specht J, Rainey K M, Cregan P, Song Q, Ramasubramanian V, Graef G, Nelson R, Schapaugh W, Wang D, Shannon G, McHale L, Kantartzi S K, Xavier A, Mian R, Stupar R M, Michno J M, An Y C, Goettel W, Ward R, Fox C, Lipka A E, Hyten D, Cary T, Beavis W D. Genetic architecture of soybean yield and agronomic traits. G3: Genes Genom Genet, 2018, 8:3367-3375. |
[7] |
Palomeque L, Liu L J, Li W B, Hedges B R, Cober E R, Smid M P, Lukens L, Rajcan I. Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans. Theor Appl Genet, 2010, 120:997-1003.
doi: 10.1007/s00122-009-1227-7 pmid: 20012262 |
[8] |
Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41:493-509.
doi: 10.2135/cropsci2001.412493x |
[9] |
Li D D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci, 2008, 48:571-581.
doi: 10.2135/cropsci2007.06.0361 |
[10] |
Lee S, Jun T H, Michel A P, Rouf Mian M A. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica, 2015, 203:521-532.
doi: 10.1007/s10681-014-1252-8 |
[11] |
Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean [Glycine max(L). Merr.] genetic map and their association with EST markers. Theor Appl Genet, 2004, 108:1131-1139.
pmid: 15067400 |
[12] |
Kim K S, Diers B W, Hyten D L, Rouf Mian M A, Shannon J G, Nelson R L. Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations. Theor Appl Genet, 2012, 125:1353-1369.
doi: 10.1007/s00122-012-1944-1 pmid: 22869284 |
[13] |
Palomeque L, Liu L J, Li W B, Hedges B, Cober E R, Rajcan I. QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted × high-yielding exotic soybean lines. Theor Appl Genet, 2009, 119:429-436.
doi: 10.1007/s00122-009-1048-8 pmid: 19462149 |
[14] | 周蓉, 王贤智, 陈海峰, 张晓娟, 单志慧, 吴学军, 蔡淑平, 邱德珍, 周新安, 吴江生. 大豆倒伏性及其相关性状的QTL分析. 作物学报, 2009, 35:57-65. |
Zhou R, Wang X Z, Chen H F, Zhang X J, Shan Z H, Wu X J, Cai S Z, Qiu D Z, Zhou X A, Wu J S. QTL Analysis of lodging and related traits in soybean. Acta Agron Sin, 2009, 35:57-65 (in Chinese with English abstract). | |
[15] |
Zhang X L, Wang W B, Guo N, Zhang Y Y, Bu Y P, Zhao J M, Xing H. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics, 2018, 19:226-237.
doi: 10.1186/s12864-018-4582-4 |
[16] |
Chen L Y, Nan H Y, Kong L P, Yue L, Yang H, Zhao Q S, Li H Y, Cheng Q, Lu S J, Kong F J, Liu B H, Dong L D. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, 2020, 62:1868-1879.
doi: 10.1111/jipb.v62.12 |
[17] |
Yang X, Li X, Shan J M, Li Y H, Zhang Y T, Wang Y H, Li W B, Zhao L. Overexpression of GmGAMYB accelerates the transition to flowering and increases plant height in soybean. Front Plant Sci, 2021, 12:667242.
doi: 10.3389/fpls.2021.667242 pmid: 34040624 |
[18] |
Li Z F, Guo Y, Ou L, Hong H L, Wang J, Liu Z X, Guo B F, Zhang L J, Qiu L J. Identification of the dwarf gene GmDW1 in soybean(Glycine max L.) by combining mapping-by-sequencing and linkage analysis. Theor Appl Genet, 2018, 131:1001-1016.
doi: 10.1007/s00122-017-3044-8 |
[19] |
Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S L, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/ Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19:562-572.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439 |
[20] |
Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed, 2011, 130:133-138.
doi: 10.1111/pbr.2011.130.issue-2 |
[21] | Chen K, Liu W C, Li X W, Li H Y. GmGASA32 overexpression of promoted soybean height by interacting with GmCDC25. Plant Signal Behav, 2021, 16:e1855017. |
[22] | Weigel D, Glazebrook J. Dellaporta miniprep for plant DNA isolation. Cold Spring Harb Protoc, 2009, 3(4):1-2. |
[23] | 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35:239-245. |
Wang J W. Inclusive composite interval mapping of guantitative trait genes. Acta Agron Sin, 2009, 35:239-245 (in Chinese with English abstract). | |
[24] |
McCouch S R, Chen X, Panaud O, Temnykb S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35:89-99.
pmid: 9291963 |
[25] |
Pathan S M, Vuong T, Clark T, Lee J D, Shannon J G, Roberts A C, Ellersieck M A, Burton J W, Cregan P B, Hyten D L, Nguyen H T, Sleper D A. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci, 2013, 53:765-774.
doi: 10.2135/cropsci2012.03.0153 |
[26] |
Li D M, Sun M M, Han Y P, Teng W L, Li W B. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica, 2010, 172:49-57.
doi: 10.1007/s10681-009-0036-z |
[27] |
Chapman A, Pantalone V. R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129:387-393.
doi: 10.1023/A:1022282726117 |
[28] |
Hu W F, Yan H W, Lou S S, Pan F, Wang Y, Xiang Y. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments. Plant Physiol Biochem, 2018, 128:50-65.
doi: 10.1016/j.plaphy.2018.04.021 |
[29] |
Gil P, Green P J. Regulatory activity exerted by the SAUR-AC1 promoter region in transgenic plants. Plant Mol Biol, 1997, 34:803-808.
pmid: 9278170 |
[30] |
Aleman F, Yazaki J, Lee M, Takahashi Y, Kim A Y, Li Z, Kinoshita T, Ecker J R, Schroeder J I. An ABA-increased interaction of thePYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling. Sci Rep, 2016, 6:28941-28950.
doi: 10.1038/srep28941 |
[31] | 杨琪. 大豆遗传基础拓宽问题. 大豆科学, 1993, (1):75-80. |
Yang Q. The problem of broadening the genetic basis of soybean. Soybean Sci, 1993, (1):75-80 (in Chinese). | |
[32] | 王彩洁, 孙石, 吴宝美, 常汝镇, 韩天富. 20世纪40年代以来中国大面积种植大豆品种的系谱分析. 中国油料作物学报, 2013, 35:246-252. |
Wang C J, Sun S, Wu B M, Chang R Z, Han T F. Pedigree analysis of soybean varieties planted in large areas in China since the 1940s. J Oil Crop Sci, 2013, 35:246-252 (in Chinese with English abstract). | |
[33] | Tan C, Han Z M, Yu H H, Zhan W, Xie W B, Chen X, Zhao H, Zhou F S, Xing Y Z. QTL scanning for rice yield using a whole genome SNP array. Genet Genomics, 2013, 40:629-638. |
[34] |
Chen H T, Kumawat G, Yan Y L, Fan B J, Xu D H. Mapping and validation of a major QTL for primary root length of soybean seedlings grown in hydroponic conditions. BMC Genomics, 2021, 22:132-140.
doi: 10.1186/s12864-021-07445-0 |
[35] |
Li H Y, L H C, Han Y P, Wu X X, Teng W L, Liu G F, Li W B. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet, 2010, 120:1405-1413.
doi: 10.1007/s00122-010-1264-2 |
[36] |
Ma Y J, Kan G Z, Zhang X N, Wang Y L, Zhang W, Du H Y, Yu D Y. Quantitative trait loci (QTL) mapping for glycinin and β-conglycinin contents in soybean (Glycine max L. Merr.). Agric Food Chem, 2016, 64:3473-3483.
doi: 10.1021/acs.jafc.6b00167 |
[37] |
Li X Y, Xue H, Zhang K X, Li W B, Fang Y L, Qi Z Y, Wang Y, Tian X C, Song J, Li W X, Ning H L. Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population. J Agric Sci, 2019, 157:659-675.
doi: 10.1017/S0021859620000040 |
[38] |
Choi I, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M, Hwang E, Yi S, Young N D, Shoemaker R C, Tassell C P, Specht J E, Cregan P B. A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics, 2007, 176:685-696.
doi: 10.1534/genetics.107.070821 |
[39] |
Liu N X, Li M, Hu X B, Ma Q B, Ma Y H, Tan Z Y, Xia Q J, Zhang G Y, Nian H. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing. BMC Genomics, 2017, 18:466-478.
doi: 10.1186/s12864-017-3854-8 |
[40] |
Zhang X, Hina A, Song S Y, Kong J J, Bhat J A, Zhao T J. Whole-genome mapping identified novel “QTL hotspots regions” for seed storability in soybean (Glycine max L.). BMC Genomics, 2019, 20:499-512.
doi: 10.1186/s12864-019-5897-5 pmid: 31208334 |
[41] |
Li B, Fan S X, Yu F K, Chen Y, Zhang S R, Han F X, Yan S R, Wang L Z, Sun J M. High-resolution mapping of QTL for fatty acid composition in soybean using specific-locus amplified fragment sequencing. Theor Appl Genet, 2017, 130:1467-1479.
doi: 10.1007/s00122-017-2902-8 |
[42] |
Silva M P, Klepadlo M, Gbur E E, Pereira A, Mason R E, Rupe J C, Bluhm B H, Wood L, Mozzoni L A, Chen P Y. QTL mapping of charcoal rot resistance in PI 567562A soybean accession. Crop Sci, 2019, 59:474-479.
doi: 10.2135/cropsci2018.02.0145 |
[43] |
Shim S, Kim M Y, Ha J, Lee Y H, Lee S H. Identification of QTLs for branching in soybean [Glycine max(L.) Merrill]. Euphytica, 2017, 213:225-233.
doi: 10.1007/s10681-017-2016-z |
[44] |
Li X Y, Zhang K X, Sun X, Huang S S, Wang J J, Yang C, Siyal M, Wang C, Guo C L, Hu X Y, Li W X, Ning H L. Detection of QTL and QTN and candidate genes for oil content in soybean using a combination of four-way-RIL and germplasm populations. Crop J, 2020, 8:802-811.
doi: 10.1016/j.cj.2020.07.004 |
[45] |
Wang J, Chu S S, Zhang H R, Zhu Y, Cheng H, Yu D Y. Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep, 2016, 6:20728.
doi: 10.1038/srep20728 |
[46] | Song Q J, Hyten D L, Jia G F, Quigly C V, Fickus E W, Nelson R L, Cregan P B. Development and evaluation of SoySNP50K, a high density genotyping array for soybean. PLoS One, 2013, 8:e54985. |
[47] |
Song Q J, Jenkins J, Jia G F, Hyten D L, Pantalone V, Jackson S A, Schmutz J, Cregan P B. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17:33-43.
doi: 10.1186/s12864-015-2344-0 |
[48] |
Boehm J D, Nguyen V, Tashiro R M, Anderson D T, Shi C, Wu X G, Woodrow L, Yu K F, Cui Y H, Li Z L. Genetic mapping and validation of the loci controlling 7S α’ and 11S a‑type storage protein subunits in soybean [Glycine max(L.) Merr.]. Theor Appl Genet, 2018, 131:659-671.
doi: 10.1007/s00122-017-3027-9 |
[49] |
Song Q J, Yan L, Quigley C, Fickus E, Wei H, Chen L F, Dong F M, Araya S, Liu J L, Hyten D, Pantalone V, Nelson R L. Soybean BARCSoySNP6K: an assay for soybean genetics and breeding research. Plant J, 2020, 104:800-811.
doi: 10.1111/tpj.v104.3 |
[50] |
Lee S, Freewalt K R, McHale L K, Song Q J, Jun T, Michel A P, Dorrance A E, Rouf Mian M A. A high-resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6K. Mol Breed, 2015, 35:58.
doi: 10.1007/s11032-015-0209-5 |
[51] |
Bhusal S J, Jiang G L, Song Q J, Cregan P B, Wright D, Jose L, Hernandez G. Genome-wide detection of genetic loci associated with soybean aphid resistance in soybean germplasm PI603712. Euphytica, 2017, 213:144-159.
doi: 10.1007/s10681-017-1933-1 |
[52] |
Stasko A K, Wickramasinghe D, Nauth B J, Acharya B, Ellis M L, Taylor C G, Mchale L K, Dorrance A E. High-density mapping of resistance QTL toward Phytophthora sojae, Pythium irregulare, and Fusarium graminearum in the same soybean population. Crop Sci, 2016, 56:2476-2492.
doi: 10.2135/cropsci2015.12.0749 |
[53] |
Do T D, Vuong T D, Dunn D, Smothers S, Patil G, Yungbluth D C, Chen P Y, Scaboo A, Xu D, Carter T E, Nguyen H T, Shannon J G. Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theor Appl Genet, 2018, 131:513-524.
doi: 10.1007/s00122-017-3015-0 |
[54] |
Beche E, Gillman J D, Song Q J, Nelson R, Beissinger T, Decker J, Shannon G, Scaboo A M. Nested association mapping of important agronomic traits in three interspecific soybean populations. Theor Appl Genet, 2020, 133:1039-1054.
doi: 10.1007/s00122-019-03529-4 |
[55] |
Contreras-Soto R I, Oliveira M D, Costenaro-Da-Silva D, Scapim C A, Schuster I. Population structure, genetic relatedness and linkage disequilibrium blocks in cultivars of tropical soybean (Glycine max). Euphytica, 2017, 213:173-184.
doi: 10.1007/s10681-017-1966-5 |
[56] |
Lee S, Jun T H, McHale L K, Miche A P, Dorrance A E, Song Q J, Mian M A R. Registration of Wyandot × PI 567301B soybean recombinant inbred line population. J Plant Regist, 2017, 11:324-327.
doi: 10.3198/jpr2016.09.0042crmp |
[57] |
Lee Y G, Jeong N, Kim J H, Lee K, Kim K H, Pirani A, Ha B K, Kang S T, Park B S, Moon J K, Kim N, Jeong S C. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J, 2015, 81:625-636.
doi: 10.1111/tpj.2015.81.issue-4 |
[58] |
Lee J S, Kim S M, Kang S. Fine mapping of quantitative trait loci for sucrose and oligosaccharide contents in soybean [Glycine max(L.) Merr.] using 180 K Axiom® SoyaSNP genotyping platform. Euphytica, 2016, 208:195-203.
doi: 10.1007/s10681-015-1622-x |
[59] |
Lee J S, Kim K R, Ha B K, Kang S. Identification of SNPs tightly linked to the QTL for pod shattering in soybean. Mol Breed, 2017, 37:54-63.
doi: 10.1007/s11032-017-0656-2 |
[60] |
Seo J H, Kim K S, Ko J M, Choi M S, Kang B K, Kwon S W, Jun T H. Quantitative trait locus analysis for soybean (Glycine max) seed protein and oil concentrations using selected breeding populations. Plant Breed, 2019, 138:95-104.
doi: 10.1111/pbr.2019.138.issue-1 |
[61] |
Orf J H, Chase K, Jarvik T, Mansur M L, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39:1642-1651.
doi: 10.2135/cropsci1999.3961642x |
[62] |
Anantharaman V, Aravind L. Novel eukaryotic enzymes modifying cell-surface biopolymers. Biol Direct, 2010, 5:1.
doi: 10.1186/1745-6150-5-1 pmid: 20056006 |
[63] |
Bischoff V, Selbig J, Scheible W. Involvement of TBL/DUF231 proteins into cell wall biology. Plant Signal Behav, 2010, 5:1057-1059.
doi: 10.4161/psb.5.8.12414 pmid: 20657172 |
[64] | Lefebvre V, Fortabat M N, Ducamp A, North H M, Maia-Grondard A, Trouverie J, Boursiac Y, Mouille G, Durand-Tardif M. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport. PLoS One, 2011, 6:e16645. |
[65] |
Herr A J, Molnàr A, Jones A, Baulcombe D C. Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc Natl Acad Sci USA, 2006, 103:14994-15001.
doi: 10.1073/pnas.0606536103 |
[66] |
Howles P A, Gebbie L K, Collings D A, Varsani A, Broad R C, Ohms S, Birch R J, Cork A H, Arioli T, Williamson R E. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana. Plant Mol Biol, 2016, 91:1-13.
doi: 10.1007/s11103-016-0428-0 pmid: 27008640 |
[67] |
He Y H, Doyle M R, Amasino R M. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev, 2004, 18:2774-2784.
doi: 10.1101/gad.1244504 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[6] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[7] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[8] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[9] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[10] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[11] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[12] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[13] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[14] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[15] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
|