作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1346-1356.doi: 10.3724/SP.J.1006.2022.11055
胡文静1,2,*(), 李东升1, 裔新1,3, 张春梅1, 张勇1,2,*()
HU Wen-Jing1,2,*(), LI Dong-Sheng1, YI Xin1,3, ZHANG Chun-Mei1, ZHANG Yong1,2,*()
摘要:
穗部性状和株高是小麦育种的重要指标。以扬麦13 (Yangmai 13, 简称YM13)和CIMMYT引进种质人工合成小麦衍生系C615为亲本构建重组自交系群体为研究材料, 基于小麦90K SNP芯片基因型数据, 结合3个环境下表型结果, 分别检测到1个每穗结实总小穗数、2个穗长、2个结实小穗着生密度和3个株高的位点。其中, 每穗结实总小穗数位点QSN.yaas-3B与株高位点QPH.yaas-3B处于同一位置, 穗长位点QSL.yaas-5A、结实小穗着生密度位点QSC.yaas-5A和株高位点QPH.yaas-5A处于同一位置, 穗长位点QSL.yaas-6A和结实小穗着生密度的位点QSC.yaas-6A处于同一位置。比对结果显示QSN.yaas-3B/QPH.yaas-3B和QSL.yaas-6A/QSC.yaas-6A位点均未见报道。进一步将QSL.yaas-5A/QSC.yaas-5A/ QPH.yaas-5A位点紧密连锁SNP标记转化为KASP标记QC615-5A-KASP, 并在105份小麦品系中初步验证其育种效应。研究结果可为小麦产量相关性状分子育种提供参考。
[1] | 王荣栋, 尹经章. 作物栽培学. 北京: 高等教育出版社, 2005. pp 4-5. |
Wang R D, Yin J Z. Crop Cultivation. Beijing: Higher Education Press, 2005. pp 4-5(in Chinese). | |
[2] | 胡文静, 高德荣, 陆成彬, 梁秀梅, 石宜宗, 程顺和. 小麦穗部性状和株高的QTL定位及T6VS·6AL易位效应分析. 麦类作物学报, 2019, 39: 505-512. |
Hu W J, Gao D R, Lu C B, Liang X M, Shi Y Z, Cheng S H. QTL mapping for spike traits and plant height in wheat (Triticum aestivum L.) and analysis of the effect of T6VS·6AL translocation. J Triticeae Crops, 2019, 39: 505-512 (in Chinese with English abstract). | |
[3] |
Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659-675.
doi: 10.1007/s00122-013-2249-8 pmid: 24326459 |
[4] | 梁秀梅, 胡文静, 李东升, 程婧晔, 吴荣林, 程晓明, 程顺和. 扬麦17/宁麦18 F2群体穗部性状的QTL定位. 麦类作物学报, 2018, 38: 505-512. |
Liang X M, Hu W J, Li D S, Cheng J Y, Wu R L, Cheng X M, Cheng S H. QTL mapping for spike traits in wheat (Triticum aestivum L.) using F2 population of Yangmai 17/Ningmai 18. J Triticeae Crop, 2018, 38: 505-512 (in Chinese with English abstract). | |
[5] | 魏艳丽, 王彬龙, 李瑞国, 蒋会利, 张安静. 大穗小麦穗部性状的遗传分析. 麦类作物学报, 2015, 35: 1366-1371. |
Wei Y L, Wang B L, Li R G, Jiang H L, Zhang A J. Genetic analysis on spike characteristics of wheat variety with large spike. J Triticeae Crop, 2015, 35: 1366-1371 (in Chinese with English abstract). | |
[6] |
刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820-831.
doi: 10.3724/SP.J.1006.2016.00820 |
Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J X. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin, 2016, 42: 820-831 (in Chinese with English abstract). | |
[7] |
Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder M S, Weberet W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936.
doi: 10.1007/s00122-002-0994-1 |
[8] |
Liu G, Xu S B, Ni Z F, Xie C J, Qin D D, Li Jing, Lu L H, Zhang J P, Peng H R, Sun Q X. Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Chin Sci Bull, 2011, 56: 1897-1903.
doi: 10.1007/s11434-011-4506-z |
[9] | 吕广德, 靳雪梅, 郭营, 赵岩, 钱兆国, 吴科, 李斯深. 小麦株高分子遗传学研究进展. 植物遗传资源学报, 2021, 22: 571-582. |
Lyu G D, Jin X M, Guo Y, Zhao Y, Qian Z G, Wu K, Li S S. Advances in molecular genetics of wheat plant height. J Plant Genet Resour, 2021, 22: 571-582 (in Chinese with English abstract). | |
[10] |
Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307 |
[11] |
Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelmet E P. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol, 2011, 157: 1820-1831.
doi: 10.1104/pp.111.183657 |
[12] |
Botwaright T L, Rebetzke G J, Condon A G, Richard A R. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigor in wheat (Triticum aestivum L.). Ann Bot, 2005, 95: 631-639.
doi: 10.1093/aob/mci069 |
[13] |
Ellis M H, Spielmeyer W, Gale K R, Rebetzke G J, Richard A R. ‘Perfect’ markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042.
pmid: 12582931 |
[14] | 唐娜, 逯芳芳, 何蓓如, 胡银岗. 矮秆基因对小麦部分农艺性状的效应. 西北植物学报, 2010, 30: 41-49. |
Tang N, Lu F F, He B R, Hu Y G. Effects of dwarfing genes on some agronomic characteristics of wheat. Acta Agric Boreali- Occident Sin, 2010, 30: 41-49 (in Chinese with English abstract). | |
[15] |
Chen S L, Gao R H, Wang H Y, Wen M X, Xiao J, Bian N F, Zhang R Q, Hu W J, Cheng S H, Bie T D, Wang X E. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica, 2015, 203: 583-594.
doi: 10.1007/s10681-014-1275-1 |
[16] |
Fabre F, Rocher F, Alouane T. Searching for FHB Resistances in bread wheat: susceptibility at the crossroad. Front Plant Sci, 2020, 11: 731.
doi: 10.3389/fpls.2020.00731 |
[17] | 陈亮. 矮秆基因Rht12对小麦重要农艺性状的遗传效应及新矮秆突变体的筛选. 西北农林科技大学博士学位论文, 陕西杨凌, 2014. |
Chen L. Genetic Effects of Dwarfing Gene Rht12 on Important Agronomic Traits of Wheat and Screening of New Dwarf Mutants. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2014 (in Chinese with English abstract). | |
[18] |
Stacey J, Isaac P G. Isolation of DNA from plants. Methods Mol Biol, 1994, 28: 9-15.
pmid: 8118521 |
[19] |
Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516 |
[20] | 朱冬梅, 胡文静, 别同德, 陆成彬, 赵仁慧, 高德荣. 利用四交RIL群体定位小麦籽粒脱水速率QTL. 麦类作物学报, 2020, 40: 49-54. |
Zhu D M, Hu W J, Bie T D, Lu C B, Zhao R H, Gao D R. QTL mapping for kernel dehydration rate after physiological maturity using four-way RIL population of wheat. J Triticeae Crop, 2020, 40: 49-54 (in Chinese with English abstract). | |
[21] |
Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J, 1993, 3: 739-744.
doi: 10.1111/j.1365-313X.1993.00739.x |
[22] |
Wang S C, Wong D, Forrest K, Allen A M, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C T, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploidy wheat genomic diversity using the high density 90,000 SNP array. Plant Biotechnol J, 2014, 12: 787-796.
doi: 10.1111/pbi.2014.12.issue-6 |
[23] | 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239-245. |
Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239-245 (in Chinese with English abstract). | |
[24] |
胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157-165.
doi: 10.3724/SP.J.1006.2020.91048 |
Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agron Sin, 2020, 46: 157-165 (in Chinese with English abstract). | |
[25] |
姜朋, 何漪, 张旭, 吴磊, 张平平, 马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析. 作物学报, 2020, 46: 858-868.
doi: 10.3724/SP.J.1006.2020.91063 |
Jiang P, He Y, Zhang X, Wu L, Zhang P P, Ma H X. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158. Acta Agron Sin, 2020, 46: 858-868 (in Chinese with English abstract). | |
[26] |
李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918 |
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931 (in Chinese with English abstract). | |
[27] | 胡文静, 裔新, 高德荣, 朱冬梅, 陆成彬, 程顺和, 张勇. 小麦品种扬麦13粒重QTL定位. 植物遗传资源学报, 2021, 22: 782-788. |
Hu W J, Yi X, Gao D R, Zhu D M, Lu C B, Cheng S H, Zhang Y. Genetic mapping of the quantitative trait locus contributes to the grain weight in cultivar Yangmai 13. J Plant Genet Resour, 2021, 22: 782-788 (in Chinese with English abstract). | |
[28] |
Yi X, Cheng J Y, Jiang Z N, Hu W J, Bie T D, Gao D R, Li D S, Wu R L, Li Y L, Chen S L, Cheng X M, Liu J P, Cheng S H. Genetic analysis of Fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Front Plant Sci, 2018, 9: 573.
doi: 10.3389/fpls.2018.00573 |
[29] | 周晓变, 赵磊, 陈建辉, 阳霞, 王永彥, 张香粉, 闫雪芳, 董中东, 崔党群, 陈锋. 黄淮麦区小麦种质资源矮秆基因分布及其与农艺性状的关系. 麦类作物学报, 2017, 37: 997-1007. |
Zhou X B, Zhao L, Chen J H, Yang X, Wang Y X, Zhang X F, Yan X F, Dong X F, Dong Z Q, Chen F. Distribution of dwarf genes and their association with agronomic traits in bread wheat from the Yellow and Huai wheat region. J Triticeae Crops, 2017, 37: 997-1007 (in Chinese with English abstract). | |
[30] |
Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155-3167.
doi: 10.1007/s00122-019-03415-z pmid: 31435704 |
[31] | 孙中沛, 刘天相, 左希亚, 赵璟琛, 王中华, 李春莲. 普通小麦穗部性状QTL分析. 麦类作物学报, 2017, 37: 452-457. |
Sun Z P, Liu T X, Zuo X Y, Zhao J C, Wang Z H, Li C L. QTL mapping of spike-related traits in common wheat. J Triticeae Crops, 2017, 37: 452-457 (in Chinese with English abstract). | |
[32] |
Chen Z Y, Cheng X J, Chai L L, Wang Z H, Du D J, Wang Z H, Bian R L, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 1825-1838.
doi: 10.1007/s00122-020-03556-6 |
[33] |
Zhao K J, Xiao J, Liu Y, Chen S L, Yuan C X, Cao A Z, You F M, Yang D L, An S M, Wang H Y, Wang X E. Rht23 (5Dq′) likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor Appl Genet, 2018, 131: 1825-1834.
doi: 10.1007/s00122-018-3115-5 |
[34] |
Kosuge K, Watanabe N, Kuboyama T, Melnik V M, Yanchenko V I, Rosova M A, Goncharov N P. Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica, 2008, 159: 289-296.
doi: 10.1007/s10681-007-9488-1 |
[35] |
Kosuge K, Watanabe N, Melnik V M, Laikova L I, Goncharov N P. New sources of compact spike morphology determined by the genes on chromosome 5A in hexaploid wheat. Genet Resour Crop Evol, 2012, 59: 1115-1124.
doi: 10.1007/s10722-011-9747-9 |
[36] |
Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X B, Pu X, Li J, Liu Z H, Zhang H L, Liang J J, Yang M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625-3641.
doi: 10.1007/s00122-021-03918-8 |
[37] | 李玉玲, 蒋正宁, 胡文静, 李东升, 程婧晔, 裔新, 程晓明, 吴荣林, 程顺和. CIMMYT小麦种质C615抗叶锈病QTL分析. 作物学报, 2018, 44: 836-843. |
Li Y L, Jiang Z N, Hu W J, Lu D S, Cheng J Y, Yi X, Cheng X M, Wu R L, Cheng S H. Mapping QTLs against leaf rust in CIMMYT wheat C615. Acta Agron Sin, 2018, 44: 836-843 (in Chinese with English abstract). | |
[38] | 胡文静, 裔新, 李东升, 张春梅, 高德荣, 张勇. 扬麦13/C615重组自交系籽粒蛋白质含量和硬度性状QTL分析. 麦类作物学报, 2021, 41: 930-936. |
Hu W J, Yi X, Li D S, Zhang C M, Gao D R, Zhang Y. Genetic analysis and QTL mapping for grain protein content and grain hardness using the RIL population of Yangmai 13/C615. J Triticeae Crops, 2021, 41: 930-936 (in Chinese with English abstract). | |
[39] |
Zhang Y D, Yang Z B, Ma H C, Huang L Y, Ding F, Du Y Y, Jia H Y, Li G Q, Kong Z X, Ran C F, Gu Z Z, Ma Z Q. Pyramiding of Fusarium head blight resistance quantitative trait loci, Fhb1, Fhb4, and Fhb5, in modern Chinese wheat cultivars. Front Plant Sci, 2021, 12: 694023.
doi: 10.3389/fpls.2021.694023 |
[1] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[6] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[7] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[8] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[9] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[10] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[13] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[14] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[15] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
|