欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1346-1356.doi: 10.3724/SP.J.1006.2022.11055

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦穗部性状和株高的QTL定位及育种标记开发和验证

胡文静1,2,*(), 李东升1, 裔新1,3, 张春梅1, 张勇1,2,*()   

  1. 1江苏里下河地区农业科学研究所 / 农业农村部长江中下游小麦生物学与遗传育种重点实验室, 江苏扬州 225007
    2扬州大学 / 江苏省粮食作物现代产业技术协同创新中心 / 江苏省植物功能基因组学重点实验室, 江苏扬州 225009
    3淮阴师范学院 / 江苏省环洪泽湖生态农业生物技术重点实验室, 江苏淮安 223300
  • 收稿日期:2021-06-18 接受日期:2021-10-19 出版日期:2022-06-12 网络出版日期:2021-11-15
  • 通讯作者: 胡文静,张勇
  • 作者简介:E-mail: huren2008@126.com
  • 基金资助:
    国家自然科学基金项目(31901544);国家重点研发计划项目(2017YFD0100801);国家重点研发计划项目(2017YFD0101802)

Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat

HU Wen-Jing1,2,*(), LI Dong-Sheng1, YI Xin1,3, ZHANG Chun-Mei1, ZHANG Yong1,2,*()   

  1. 1Lixiahe Institute of Agricultural Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Yangzhou University, Yangzhou, Jiangsu 225009, China
    3Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake / Huaiyin Normal University, Huai’an 223300, Jiangsu, China
  • Received:2021-06-18 Accepted:2021-10-19 Published:2022-06-12 Published online:2021-11-15
  • Contact: HU Wen-Jing,ZHANG Yong
  • Supported by:
    National Natural Science Foundation of China(31901544);National Key Research and Development Program of China(2017YFD0100801);National Key Research and Development Program of China(2017YFD0101802)

摘要:

穗部性状和株高是小麦育种的重要指标。以扬麦13 (Yangmai 13, 简称YM13)和CIMMYT引进种质人工合成小麦衍生系C615为亲本构建重组自交系群体为研究材料, 基于小麦90K SNP芯片基因型数据, 结合3个环境下表型结果, 分别检测到1个每穗结实总小穗数、2个穗长、2个结实小穗着生密度和3个株高的位点。其中, 每穗结实总小穗数位点QSN.yaas-3B与株高位点QPH.yaas-3B处于同一位置, 穗长位点QSL.yaas-5A、结实小穗着生密度位点QSC.yaas-5A和株高位点QPH.yaas-5A处于同一位置, 穗长位点QSL.yaas-6A和结实小穗着生密度的位点QSC.yaas-6A处于同一位置。比对结果显示QSN.yaas-3B/QPH.yaas-3BQSL.yaas-6A/QSC.yaas-6A位点均未见报道。进一步将QSL.yaas-5A/QSC.yaas-5A/ QPH.yaas-5A位点紧密连锁SNP标记转化为KASP标记QC615-5A-KASP, 并在105份小麦品系中初步验证其育种效应。研究结果可为小麦产量相关性状分子育种提供参考。

关键词: 小麦, 90K SNP, 穗部性状, 株高, QTL, KASP标记, 标记辅助育种

Abstract:

Spike-related traits and plant height are important target traits in wheat breeding. In the present study, a population of 198 recombinant inbred lines (RILs) derived from the cross between a CIMMYT wheat line C615 and Yangmai 13 (YM13) was constructed, followed by genotyping with Wheat 90K SNP array and phenotyping of spike-related traits and plant height in three environments to excavate QTLs (quantitative trait loci) for these traits. Using composite interval mapping method, we identified one QTL for total spikelet number per spike (TSS), two QTLs for spike length (SL), two QTLs for spikelet compactness (SC), and three QTLs for plant height (PH). QSN.yaas-3B and QPH.yaas-3B overlapped on the chromosome 3B. QSL.yaas-5A, QSC.yaas-5A and QPH.yaas-5A overlapped on the chromosome 5A. QSL.yaas-6A and QSC.yaas-6A overlapped on the chromosome 6A. QSN.yaas-3B/QPH.yaas-3B and QSL.yaas-6A/QSC.yaas-6A had not been reported yet, and were likely to be novel loci. The SNP marker closely linked to QSL.yaas-5A/QSC.yaas-5A/QPH.yaas-5A was then converted into one Kompetitive Allele Specific PCR (KASP) marker (QC615-5A-KASP), and validated in a panel of 105 wheat lines. The results would be useful for improvement of yield related traits in wheat breeding.

Key words: wheat, 90K SNP, spike-related traits, plant height, QTLs, KASP markers, marker-assisted selection

表1

C615/扬麦13的亲本和RIL群体穗部性状和株高的变异"

亲本 Parent RIL群体 RIL population
性状
Trait
C615 YM13 平均值 Mean 最大值
Max.
最小值
Min.
偏度
Skewness
峰度
Kurtosis
遗传力
Heritability
每穗结实总小穗数 TSS 20.56 A 19.02 A 19.36 22.25 16.34 -0.04 0.49 0.68
穗长 SL (cm) 10.51 A 11.30 A 11.61 13.78 9.80 0.30 -0.23 0.79
结实小穗着生密度 SC (No. cm-1) 1.96 A 1.69 B 1.68 2.06 1.40 0.10 -0.41 0.81
株高 PH (cm) 121.52 A 88.92 B 106.71 134.10 81.66 0.06 -0.35 0.90

表2

每穗结实小穗数、穗长、结实小穗着生密度和株高QTL"

性状
Trait
位点
QTL
环境
Environment
遗传位置
Genetic position (cM)
物理位置
Physical position (Mb)
标记区间
Marker interval
LOD 表型贡献率
PVE (%)
加性效应*
Add*
每穗结实总小穗数 TSS QSN.yaas-3B 17YZ 72.10 31.11 Excalibur_c24391_321-BS00070455_51 3.00 6.12 -0.38
穗长 SL QSL.yaas-5A 17YZ 146.10 519.89 wsnp_Ex_c5626_9897389-BS00069175_51 10.70 16.78 -0.43
QSL.yaas-6A 15YZ 214.10 0.62 wsnp_Ku_c7471_12865307-wsnp_Ku_c34036_43438136 9.11 13.66 -0.40
结实小穗着生密度 SC QSC.yaas-5A 15YZ 145.70 519.89 RAC875_c8690_446-wsnp_Ex_c5626_9897389 5.59 12.90 0.05
16YZ 146.20 wsnp_Ex_c5626_9897389-BS00069175_51 9.21 19.34 0.06
17YZ 144.40 BS00068178_51-RAC875_c8690_446 11.59 25.31 0.07
QSC.yaas-6A 15YZ 213.60 0.62 wsnp_Ku_c7471_12865307-wsnp_Ku_c34036_43438136 3.98 12.05 0.05
株高 PH QPH.yaas-3B 15YZ 73.20 31.11 Excalibur_c24391_321-BS00070455_51 5.35 7.07 3.89
16YZ 76.00 Excalibur_c24391_321-BS00070455_51 6.26 6.43 4.00
17YZ 76.00 Excalibur_c24391_321-BS00070455_51 2.61 2.85 2.51
QPH.yaas-4D 16YZ 61.00 18.72 Kukri_rep_c101259_81-Rht-D1_SNP 8.41 13.08 7.10
17YZ 62.80 Kukri_rep_c101259_81-Rht-D1_SNP 9.66 14.42 7.62
QPH.yaas-5A 16YZ 144.60 519.89 RAC875_c8690_446-wsnp_Ex_c5626_9897389 11.93 14.54 -5.15
17YZ 144.40 BS00068178_51-RAC875_c8690_446 11.12 12.33 -5.03

图1

穗部性状和株高QTL的遗传连锁图 连锁群右边是标记名称, 左边是遗传位置(cM), QTL右边对应LOD值。15YZ、16YZ和17YZ分别代表2015年、2016年和2017年环境。TSS、SL、SC和PH分别代表每穗结实总小穗数、穗长、结实小穗着生密度和株高。"

表3

穗部性状和株高QTL位点不同等位变异的t检测结果"

位点
QTL
连锁标记
Linked marker
总小穗数
TSS
穗长
SL (cm)
小穗着生密度SC (No. cm-1) 株高
PH (cm)
数目
Number
QSN.yaas-3B BS00070455_51 C615等位变异
C615 allele
19.21 B 11.57 A 1.66 A 108.60 A 140
QPH.yaas-3B 扬麦13等位变异 Yangmai 13 allele 19.74 A 11.68 A 1.69 A 101.01 B 54
tt-value -3.52 -0.89 -1.44 4.60
PP-value 5.41E-04 3.76E-01 1.51E-01 7.73E-06
QPH.yaas-4D Rht-D1_SNP C615等位变异
C615 allele
19.30 A 11.60 A 1.67 A 108.27 A 171
位点
QTL
连锁标记
Linked marker
总小穗数
TSS
穗长
SL (cm)
小穗着生密度SC (No. cm-1) 株高
PH (cm)
数目
Number
扬麦13等位变异 Yangmai 13 allele 19.84 A 11.76 A 1.70 A 97.31 B 14
tt-value 1.98 0.72 0.61 -3.89
PP-value 4.90E-02 4.75E-01 5.40E-01 1.42E-04
QSL.yaas-5A RAC875_c8690_446 C615等位变异
C615 allele
19.56 A 11.33 B 1.73 A 102.97 B 110
QSC.yaas-5A 扬麦13等位变异 Yangmai 13 allele 19.09 B 11.97 A 1.60 B 111.26 A 83
QPH.yaas-5A tt-value 3.50 -5.82 8.01 -5.68
PP-value 5.82E-04 2.44E-08 1.13E-13 4.89E-08
QSL.yaas-6A wsnp_Ku_c34036_43438136 C615等位变异
C615 allele
19.58 A 11.38 B 1.73 A 105.59 A 101
QSC.yaas-6A 扬麦13等位变异 Yangmai 13 allele 19.13 B 11.85 A 1.62 B 108.11 A 94
tt-value 3.37 -4.26 6.31 -1.63
PP-value 9.20E-04 3.13E-05 1.92E-09 1.04E-01

图2

QC615-5A-KASP标记对部分RIL群体的分型结果 蓝色表示C615等位变异类型T, 红色表示扬麦13等位变异类型C, 黑色表示空白对照。"

表4

在105份小麦品系中QSL.yaas-5A/QSC.yaas-5A/QPH.yaas-5A位点不同等位变异的t-检验结果"

分析类型
Analysis type
每穗结实总小
穗数 TSS
穗长
SL (cm)
结实小穗着生
密度SC (No. cm-1)
株高
PH (cm)
数目
Number
C615等位变异 C615 allele 19.30 A 10.51 B 1.84 A 86.62 B 48
扬麦13等位变异 YM13 allele 18.95 A 11.13 A 1.71 B 89.03 A 57
tt-value 2.15 -5.42 5.38 -2.91
PP-value 0.03 3.89E-07 4.64E-07 4.44E-03
[1] 王荣栋, 尹经章. 作物栽培学. 北京: 高等教育出版社, 2005. pp 4-5.
Wang R D, Yin J Z. Crop Cultivation. Beijing: Higher Education Press, 2005. pp 4-5(in Chinese).
[2] 胡文静, 高德荣, 陆成彬, 梁秀梅, 石宜宗, 程顺和. 小麦穗部性状和株高的QTL定位及T6VS·6AL易位效应分析. 麦类作物学报, 2019, 39: 505-512.
Hu W J, Gao D R, Lu C B, Liang X M, Shi Y Z, Cheng S H. QTL mapping for spike traits and plant height in wheat (Triticum aestivum L.) and analysis of the effect of T6VS·6AL translocation. J Triticeae Crops, 2019, 39: 505-512 (in Chinese with English abstract).
[3] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659-675.
doi: 10.1007/s00122-013-2249-8 pmid: 24326459
[4] 梁秀梅, 胡文静, 李东升, 程婧晔, 吴荣林, 程晓明, 程顺和. 扬麦17/宁麦18 F2群体穗部性状的QTL定位. 麦类作物学报, 2018, 38: 505-512.
Liang X M, Hu W J, Li D S, Cheng J Y, Wu R L, Cheng X M, Cheng S H. QTL mapping for spike traits in wheat (Triticum aestivum L.) using F2 population of Yangmai 17/Ningmai 18. J Triticeae Crop, 2018, 38: 505-512 (in Chinese with English abstract).
[5] 魏艳丽, 王彬龙, 李瑞国, 蒋会利, 张安静. 大穗小麦穗部性状的遗传分析. 麦类作物学报, 2015, 35: 1366-1371.
Wei Y L, Wang B L, Li R G, Jiang H L, Zhang A J. Genetic analysis on spike characteristics of wheat variety with large spike. J Triticeae Crop, 2015, 35: 1366-1371 (in Chinese with English abstract).
[6] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820-831.
doi: 10.3724/SP.J.1006.2016.00820
Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J X. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin, 2016, 42: 820-831 (in Chinese with English abstract).
[7] Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder M S, Weberet W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936.
doi: 10.1007/s00122-002-0994-1
[8] Liu G, Xu S B, Ni Z F, Xie C J, Qin D D, Li Jing, Lu L H, Zhang J P, Peng H R, Sun Q X. Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Chin Sci Bull, 2011, 56: 1897-1903.
doi: 10.1007/s11434-011-4506-z
[9] 吕广德, 靳雪梅, 郭营, 赵岩, 钱兆国, 吴科, 李斯深. 小麦株高分子遗传学研究进展. 植物遗传资源学报, 2021, 22: 571-582.
Lyu G D, Jin X M, Guo Y, Zhao Y, Qian Z G, Wu K, Li S S. Advances in molecular genetics of wheat plant height. J Plant Genet Resour, 2021, 22: 571-582 (in Chinese with English abstract).
[10] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307
[11] Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelmet E P. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol, 2011, 157: 1820-1831.
doi: 10.1104/pp.111.183657
[12] Botwaright T L, Rebetzke G J, Condon A G, Richard A R. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigor in wheat (Triticum aestivum L.). Ann Bot, 2005, 95: 631-639.
doi: 10.1093/aob/mci069
[13] Ellis M H, Spielmeyer W, Gale K R, Rebetzke G J, Richard A R. ‘Perfect’ markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042.
pmid: 12582931
[14] 唐娜, 逯芳芳, 何蓓如, 胡银岗. 矮秆基因对小麦部分农艺性状的效应. 西北植物学报, 2010, 30: 41-49.
Tang N, Lu F F, He B R, Hu Y G. Effects of dwarfing genes on some agronomic characteristics of wheat. Acta Agric Boreali- Occident Sin, 2010, 30: 41-49 (in Chinese with English abstract).
[15] Chen S L, Gao R H, Wang H Y, Wen M X, Xiao J, Bian N F, Zhang R Q, Hu W J, Cheng S H, Bie T D, Wang X E. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica, 2015, 203: 583-594.
doi: 10.1007/s10681-014-1275-1
[16] Fabre F, Rocher F, Alouane T. Searching for FHB Resistances in bread wheat: susceptibility at the crossroad. Front Plant Sci, 2020, 11: 731.
doi: 10.3389/fpls.2020.00731
[17] 陈亮. 矮秆基因Rht12对小麦重要农艺性状的遗传效应及新矮秆突变体的筛选. 西北农林科技大学博士学位论文, 陕西杨凌, 2014.
Chen L. Genetic Effects of Dwarfing Gene Rht12 on Important Agronomic Traits of Wheat and Screening of New Dwarf Mutants. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2014 (in Chinese with English abstract).
[18] Stacey J, Isaac P G. Isolation of DNA from plants. Methods Mol Biol, 1994, 28: 9-15.
pmid: 8118521
[19] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[20] 朱冬梅, 胡文静, 别同德, 陆成彬, 赵仁慧, 高德荣. 利用四交RIL群体定位小麦籽粒脱水速率QTL. 麦类作物学报, 2020, 40: 49-54.
Zhu D M, Hu W J, Bie T D, Lu C B, Zhao R H, Gao D R. QTL mapping for kernel dehydration rate after physiological maturity using four-way RIL population of wheat. J Triticeae Crop, 2020, 40: 49-54 (in Chinese with English abstract).
[21] Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J, 1993, 3: 739-744.
doi: 10.1111/j.1365-313X.1993.00739.x
[22] Wang S C, Wong D, Forrest K, Allen A M, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C T, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploidy wheat genomic diversity using the high density 90,000 SNP array. Plant Biotechnol J, 2014, 12: 787-796.
doi: 10.1111/pbi.2014.12.issue-6
[23] 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239-245.
Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239-245 (in Chinese with English abstract).
[24] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157-165.
doi: 10.3724/SP.J.1006.2020.91048
Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agron Sin, 2020, 46: 157-165 (in Chinese with English abstract).
[25] 姜朋, 何漪, 张旭, 吴磊, 张平平, 马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析. 作物学报, 2020, 46: 858-868.
doi: 10.3724/SP.J.1006.2020.91063
Jiang P, He Y, Zhang X, Wu L, Zhang P P, Ma H X. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158. Acta Agron Sin, 2020, 46: 858-868 (in Chinese with English abstract).
[26] 李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918-931.
doi: 10.3724/SP.J.1006.2010.00918
Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918-931 (in Chinese with English abstract).
[27] 胡文静, 裔新, 高德荣, 朱冬梅, 陆成彬, 程顺和, 张勇. 小麦品种扬麦13粒重QTL定位. 植物遗传资源学报, 2021, 22: 782-788.
Hu W J, Yi X, Gao D R, Zhu D M, Lu C B, Cheng S H, Zhang Y. Genetic mapping of the quantitative trait locus contributes to the grain weight in cultivar Yangmai 13. J Plant Genet Resour, 2021, 22: 782-788 (in Chinese with English abstract).
[28] Yi X, Cheng J Y, Jiang Z N, Hu W J, Bie T D, Gao D R, Li D S, Wu R L, Li Y L, Chen S L, Cheng X M, Liu J P, Cheng S H. Genetic analysis of Fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Front Plant Sci, 2018, 9: 573.
doi: 10.3389/fpls.2018.00573
[29] 周晓变, 赵磊, 陈建辉, 阳霞, 王永彥, 张香粉, 闫雪芳, 董中东, 崔党群, 陈锋. 黄淮麦区小麦种质资源矮秆基因分布及其与农艺性状的关系. 麦类作物学报, 2017, 37: 997-1007.
Zhou X B, Zhao L, Chen J H, Yang X, Wang Y X, Zhang X F, Yan X F, Dong X F, Dong Z Q, Chen F. Distribution of dwarf genes and their association with agronomic traits in bread wheat from the Yellow and Huai wheat region. J Triticeae Crops, 2017, 37: 997-1007 (in Chinese with English abstract).
[30] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155-3167.
doi: 10.1007/s00122-019-03415-z pmid: 31435704
[31] 孙中沛, 刘天相, 左希亚, 赵璟琛, 王中华, 李春莲. 普通小麦穗部性状QTL分析. 麦类作物学报, 2017, 37: 452-457.
Sun Z P, Liu T X, Zuo X Y, Zhao J C, Wang Z H, Li C L. QTL mapping of spike-related traits in common wheat. J Triticeae Crops, 2017, 37: 452-457 (in Chinese with English abstract).
[32] Chen Z Y, Cheng X J, Chai L L, Wang Z H, Du D J, Wang Z H, Bian R L, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 1825-1838.
doi: 10.1007/s00122-020-03556-6
[33] Zhao K J, Xiao J, Liu Y, Chen S L, Yuan C X, Cao A Z, You F M, Yang D L, An S M, Wang H Y, Wang X E. Rht23 (5Dq′) likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor Appl Genet, 2018, 131: 1825-1834.
doi: 10.1007/s00122-018-3115-5
[34] Kosuge K, Watanabe N, Kuboyama T, Melnik V M, Yanchenko V I, Rosova M A, Goncharov N P. Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica, 2008, 159: 289-296.
doi: 10.1007/s10681-007-9488-1
[35] Kosuge K, Watanabe N, Melnik V M, Laikova L I, Goncharov N P. New sources of compact spike morphology determined by the genes on chromosome 5A in hexaploid wheat. Genet Resour Crop Evol, 2012, 59: 1115-1124.
doi: 10.1007/s10722-011-9747-9
[36] Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X B, Pu X, Li J, Liu Z H, Zhang H L, Liang J J, Yang M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625-3641.
doi: 10.1007/s00122-021-03918-8
[37] 李玉玲, 蒋正宁, 胡文静, 李东升, 程婧晔, 裔新, 程晓明, 吴荣林, 程顺和. CIMMYT小麦种质C615抗叶锈病QTL分析. 作物学报, 2018, 44: 836-843.
Li Y L, Jiang Z N, Hu W J, Lu D S, Cheng J Y, Yi X, Cheng X M, Wu R L, Cheng S H. Mapping QTLs against leaf rust in CIMMYT wheat C615. Acta Agron Sin, 2018, 44: 836-843 (in Chinese with English abstract).
[38] 胡文静, 裔新, 李东升, 张春梅, 高德荣, 张勇. 扬麦13/C615重组自交系籽粒蛋白质含量和硬度性状QTL分析. 麦类作物学报, 2021, 41: 930-936.
Hu W J, Yi X, Li D S, Zhang C M, Gao D R, Zhang Y. Genetic analysis and QTL mapping for grain protein content and grain hardness using the RIL population of Yangmai 13/C615. J Triticeae Crops, 2021, 41: 930-936 (in Chinese with English abstract).
[39] Zhang Y D, Yang Z B, Ma H C, Huang L Y, Ding F, Du Y Y, Jia H Y, Li G Q, Kong Z X, Ran C F, Gu Z Z, Ma Z Q. Pyramiding of Fusarium head blight resistance quantitative trait loci, Fhb1, Fhb4, and Fhb5, in modern Chinese wheat cultivars. Front Plant Sci, 2021, 12: 694023.
doi: 10.3389/fpls.2021.694023
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!