欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1569-1582.doi: 10.3724/SP.J.1006.2022.12044

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位

陈驰1,2(), 陈代波2(), 孙志豪2, 彭泽群2, 贺登美2, 张迎信2, 程海涛1, 于萍2, 马兆慧1, 宋建3, 曹立勇2, 程式华2, 孙廉平2,*(), 占小登2,*(), 吕文彦1,*()   

  1. 1沈阳农业大学农学院, 辽宁沈阳 110866
    2中国水稻研究所/国家水稻改良中心/浙江省超级稻研究重点实验室/水稻生物学国家重点实验室, 浙江杭州 311401
    3浙江省农业科学院作物与核技术利用研究所, 浙江杭州 310021
  • 收稿日期:2021-06-29 接受日期:2021-10-19 出版日期:2022-07-12 网络出版日期:2021-11-03
  • 通讯作者: 孙廉平,占小登,吕文彦
  • 作者简介:陈驰, E-mail: 595954943@qq.com
    陈代波, E-mail: chendaibo@caas.cn第一联系人:

    **同等贡献

  • 基金资助:
    浙江省自然科学基金项目(LY17C130003);浙江省自然科学基金项目(LY21C130003);水稻生物学国家重点实验室开放课题(20200105);国家自然科学基金项目(31801440);中国农业科学院创新工程项目(CAAS-ASTIP-2013-CNRRI);辽宁省科技重大专项(2019JH1/10200001)

Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.)

CHEN Chi1,2(), CHEN Dai-Bo2(), SUN Zhi-Hao2, PENG Ze-Qun2, Adil Abbas2, HE Deng-Mei2, ZHANG Ying-Xin2, CHENG Hai-Tao1, YU Ping2, MA Zhao-Hui1, SONG Jian3, CAO Li-Yong2, CHENG Shi-Hua2, SUN Lian-Ping2,*(), ZHAN Xiao-Deng2,*(), LYU Wen-Yan1,*()   

  1. 1College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
    2China National Rice Research Institute / National Center for Rice Improvement / Key Laboratory for Zhejiang Super Rice Research / State Key Laboratory of Rice Biology, Hangzhou 311401, Zhejiang, China
    3Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
  • Received:2021-06-29 Accepted:2021-10-19 Published:2022-07-12 Published online:2021-11-03
  • Contact: SUN Lian-Ping,ZHAN Xiao-Deng,LYU Wen-Yan
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Natural Science Foundation of Zhejiang Province of China(LY17C130003);Natural Science Foundation of Zhejiang Province of China(LY21C130003);Open Project of State Key Laboratory of Rice Biology(20200105);National Natural Science Foundation of China(31801440);Chinese Academy of Agricultural Sciences Innovation Project(CAAS-ASTIP-2013-CNRRI);Liaoning Provincial Major Science and Technology Projects(2019JH1/10200001)

摘要:

通过甲基磺酸乙酯(Ethyl Methyl Sulfone, EMS)诱变籼稻恢复系中恢8015 (Zhonghui 8015, wild-type, WT)筛选获得了一个性状稳定的典败型雄性不育突变体材料abortive pollen 90 (ap90)。突变体ap90与野生型中恢8015在株高、株型、分蘖数、抽穗期等农艺性状上无显著差异, 但花药瘦小、呈淡乳黄色、花粉完全典败。花药发育不同阶段的半薄切片观察结果显示, ap90突变体内的花药壁细胞发育异常, 主要表现为绒毡层细胞降解异常, 小孢子细胞在有丝分裂阶段无法形成正常的花粉壁结构、无法完成淀粉充实过程, 最终小孢子细胞退化成细线状、花药亦无法开裂。花药和花粉外壁扫描电镜观察结果显示, 突变体ap90的花药外壁皱缩, 角质层排列更紧密; 花药内壁乌氏体形状不规则、排列紧密而混乱; 花粉细胞呈干瘪状, 花粉外壁表面的孢粉素形态异常、呈不规则排列。遗传分析表明, ap90突变性状受1对隐性核基因控制, 基因的初步定位将该突变位点定位于水稻7号染色体长臂RM21421和RM21435之间491.73 kb区间内; 进一步的Mut-Map测序分析证实该区间内LOC_Os07g22850的第2个外显子区存在1个37 bp的缺失和1处单碱基替换, 使得其编码序列发生移码、转录和翻译提前终止, 导致出现ap90中的花粉完全典败和小穗不育表型。表达模式分析结果显示, 该基因在花药中特异表达, OsAP90蛋白主要定位在内质网上。qPCR检测结果表明, ap90突变体中许多雄性不育相关基因的表达量受到了该突变位点的影响, 进一步证明OsAP90在水稻花药发育的乌氏体形成、花粉壁发育中有重要作用。

关键词: 水稻, 隐性核雄性不育, ap90, Mut-Map, 表达模式分析

Abstract:

In this study, we obtained a stable male sterile mutant abortive pollen 90 (ap90) from the mutant library of Zhonghui 8015 (wild-type, WT), an indica restorer line, induced by Ethyl Methy Sulfone (EMS). Compared to the WT, the ap90 mutant displayed no significant differences in plant height, plant type, tiller number, heading date and other agronomic traits, but the anthers were thinner, light creamy yellow and pollen grains were completely abortive. Semi-thin sections observation of anther development at different stages showed that the ap90 mutant carried an abnormal development process of anther wall cells. Namely, the tapetum cell degradation was obviously abnormal, the microspore cells could not form a normal pollen wall structure during mitosis and the starch filling process was blocked which eventually resulted in the degradation of microspores into threadlets and failure of anther dehiscence. Scanning electron microscopic (SEM) observations of the anther surface and pollen exine suggested that the anther epidermis of mutant ap90 were shrunk and covered by more compactly arranged cuticles. The shape of Ubisch distributed on the inner surface of anther locule were irregular, closely arranged and disordered. The pollen grains were shriveled and the sporopollenin on the pollen exine were abnormally arranged. Genetic analysis showed that the ap90 phenotype was controlled by a pair of recessive nuclear genes. Gene preliminary mapping located the mutation site into a 491.73 kb interval between RM21421 and RM21435 on the long arm of rice chromosome 7. Further Mut-Map sequencing analysis confirmed that there was a 37 bp deletion and a following single base substitution in the second exon region of LOC_Os07g22850 in the ap90 mutant, which resulted in the shifted coding sequence, prematurely terminated transcription and translation, leading to the entire abortive pollen and sterile spikelet in the ap90 mutant. Expression pattern analysis results demonstrated that the OsAP90 gene was specifically expressed in anthers and the OsAP90 protein was mainly located in the endoplasmic reticulum (ER). The qPCR results suggested that the relative expression level of many male sterility-related genes in the ap90 mutant was affected by the mutation site, which further proved that OsAP90 played an important role during the formation of Ubisch and pollen wall in rice anther development.

Key words: rice, recessive genic male sterility, ap90, Mut-Map, the relative expression pattern

图1

野生型中恢8015 (WT)与突变体ap90的表型分析 A: 野生型中恢8015和ap90突变体抽穗期的植株; 标尺为10 cm。B: 野生型和ap90突变体的小穗; C: 野生型和ap90突变体去除内外桴的颖花形态; D: 野生型和ap90突变体的花药表型; 标尺为2 mm。E: 野生型的花粉镜检形态; F: ap90突变体的花药压片; 标尺为0.1 mm。"

图2

野生型和ap90突变体不同发育时期花药的半薄横切观察 A~E: 野生型花药横切图; F~J: 突变体ap90花药横切图。A, F: 花药发育第8a 时期; B, G: 花药发育第9时期; C, H: 第10时期; D, I: 花药发育第11时期; E, J: 花药发育第13时期。Ep: 表皮; En: 内皮层; ML: 中层; T: 绒毡层; Dy: 二分体; Msp: 小孢子; Bp: 二孢花粉; Mp: 成熟花粉。"

图3

野生型和ap90花药壁和花粉细胞的扫描电镜观察 A, B: 野生型和突变体第12时期花药的整体形态; C~F: 花药外壁; G, H: 花药内壁; I, J: 花粉细胞; K~N: 花粉外壁。aUb: 不正常的乌氏体; Ub: 乌氏体; dSp: 畸形的孢粉素; Sp: 孢粉素。放大倍数已在图中标注。"

表1

ap90 突变位点的遗传分析"

组合
Combination
F1单株结实率
Seed-setting rate of F1
F2 χ(3:1) χ20.05
野生型 No. of wild type plants 突变体 No. of mutant plants
ap90/ZH8015 82.32 365 115 0.28 3.84
ap90/02428 86.59 3322 1078 0.59

图4

雄性不育基因OsAP90的基因定位 A: ap90位点的连锁筛选与初步定位; B: Mut-Map对AP90位点的精细定位; C: 目标基因的基因结构及ap90位点; D: 突变位点引起的氨基酸变化; E: 功能标记在BC2F2中的分离鉴定。"

图5

雄性不育基因OsAP90的组织特异性表达分析 以Ubiquitin作为内参基因, 误差线表示n = 3的标准误。MMCS、MS、YMS、PMS、MPS分别代表花药发育的花粉母细胞形成期、减数分裂期、小孢子细胞时期、有丝分裂期和成熟花粉时期; WT: 野生型; ap90: 突变体。所有数据均为平均值± SD (n = 3)。**在P = 0.01水平上差异显著。*在P = 0.05水平上差异显著。"

图6

AP90 蛋白的亚细胞定位"

图7

实时荧光定量表达分析野生型和ap90突变体花药发育相关基因的表达 以Ubiquitin作为内参基因, 误差线表示n = 3的标准误。MMCS、MS、YMS、PMS、MPS分别代表花药发育的花粉母细胞形成期、减数分裂期、小孢子细胞时期、有丝分裂期和成熟花粉时期; WT: 野生型; ap90: 突变体。所有数据均为平均值± SD (n = 3)。**在P = 0.01水平上差异显著。*在P = 0.05水平上差异显著。"

[1] 朱英国. 水稻雄性不育生物学. 武汉: 武汉大学出版社, 2000. pp 1-2.
Zhu Y G. Biology of Male Sterility in Rice. Wuhan: Wuhan University Press, 2000. pp 1-2.(in Chinese)
[2] Zhang D B, Zoe A. Wilson. Stamen specification and anther development in rice. Chin Sci Bull, 2009, 54: 2342-2353.
doi: 10.1007/s11434-009-0348-3
[3] Zhang D B, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011, 38: 379-390.
doi: 10.1016/j.jgg.2011.08.001
[4] Ma H. Molecular genetic analyses of microsporogenesis and microgame to genesis in flowering plants. Annu Rev Plant Biol, 2005, 56: 393-434.
doi: 10.1146/annurev.arplant.55.031903.141717
[5] Sanders P M, Bui A Q, Weterings K, McIntire K N, Hsu Y C, Lee P Y, Truong M T, Beals T P, Goldberg R B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod, 1999, 11: 297-322.
doi: 10.1007/s004970050158
[6] 彭泽群, 龚柯, 陈代波, 李延慧, 孙志豪, 陈驰, 于萍, 张迎信, 周正平, 廖飞飞, 程式华, 曹立勇, 占小登, 孙廉平. 水稻雄性不育突变体tip2-zh的鉴定与基因定位. 植物遗传资源学报, 2021, 22: 1068-1080.
Peng Z Q, Gong K, Chen D B, Li Y H, Sun Z H, Chen C, Yu P, Zhang Y X, Zhou Z P, Liao F F, Cheng S H, Cao L Y, Zhan X D, Sun L P. Characterization and genetic mapping of a no-pollen male sterility mutant tip2-zh in rice(Oryza sativa L.). J Plant Genet Resour, 2021, 22: 1068-1080.(in Chinese with English abstract)
[7] Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. RiceUndeveloped Tapetum1is a major regulator of early tapetum development. Plant Cell, 2005, 17:2705-2722.
pmid: 16141453
[8] 杨正福, 张迎信, 孙廉平, 张沛沛, 轩丹丹, 刘嶺, 胡霞, 李紫荷, 占小登, 吴玮勋, 曹立勇, 程式华. 水稻雄性不育突变体gamyb的鉴定与基因定位. 中国水稻科学, 2016, 30: 143-151.
Yang Z F, Zhang Y X, Sun L P, Zhang P P, Xuan D D, Liu L, Hu X, Li Z H, Zhan X D, Wu W X, Cao L Y, Cheng S H. Identification and gene mapping of male sterile mutant gamyb5 in rice. Chin J Rice Sci, 2016, 30: 143-151.(in Chinese with English abstract)
[9] Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006, 18: 2999-3014.
doi: 10.1105/tpc.106.044107
[10] Yang Z F, Liu L, Sun L P, Yu P, Zhang P P, Abbas A, Xiang X J, Wu W X, Zhang Y X, Cao L Y, Cheng S H. OsMS1functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol Biol, 2019, 99: 175-191.
doi: 10.1007/s11103-018-0811-0
[11] Li H, Zheng Y, Gema V B, Yang C Y, Liang W Q, Zong J, Wilson Z A, Zhang D B. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760
[12] Muhammad U, Xu D W, Lukas S, Shi J X, Liang W Q, Jung K H, Chen M J, Luo Z J, Zhang Y Y, Yu J, Zhang D B. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol, 2020, 182: 962-976.
doi: 10.1104/pp.19.00688 pmid: 31772077
[13] Niu N N, Liang W Q, Yang X J, Jin W L, Wilson Z A, Hu J P, Zhang D B. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Commun, 2013, 4: 1445.
doi: 10.1038/ncomms2396
[14] Ji C H, Li H Y, Chen L B, Xie M, Wang F P, Chen Y L, Liu Y G. A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol Plant, 2013, 6: 1715-1718.
doi: 10.1093/mp/sst046
[15] Ono S, Liu H, Tsuda K, Fukai E, Tanaka K, Sasaki T, Nonomura K I. EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. PLoS Genet, 2018, 14: e1007238.
doi: 10.1371/journal.pgen.1007238
[16] Yu J, Meng Z L, Liang W Q, Behera S, Kudla J, Tucker M R, Luo Z J, Chen M J, Xu D W, Zhao G C, Wang J, Zhang S Y, Kim Y J, Zhang D B. A rice Ca2+ Binding protein is required for tapetum function and pollen formation. Plant Physiol, 2016, 172: 1772-1786.
doi: 10.1104/pp.16.01261
[17] Xiang X J, Sun Li P, Yu P, Yang Z F, Zhang P P, Zhang Y X, Wu W X, Chen D B, Zhan X D, Muhammad K R, Abbas A, Cheng S H, Cao L Y. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. Theor Appl Genet, 2021, 134: 453-471.
doi: 10.1007/s00122-020-03706-w
[18] Pan X Y, Yan W, Chang Z Y, Xu Y C, Luo M, Xu C J, Chen Z F, Wu J X, Tang X Y. OsMYB80 regulates anther development and pollen fertility by targeting multiple biological pathways. Plant Cell Physiol, 2020, 61: 988-1004.
doi: 10.1093/pcp/pcaa025
[19] Phan H A, Li S F, Parish R W. MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops. Plant Mol Biol, 2012, 78: 171-183.
doi: 10.1007/s11103-011-9855-0 pmid: 22086333
[20] Zhang S, Fang Z J, Zhu J, Gao J F, Yang Z N. OsMYB103 is required for rice anther development by regulating tapetum development and exine formation. Chin Sci Bull, 2010, 55: 3288-3297.
doi: 10.1007/s11434-010-4087-2
[21] Bai W T, Wang P R, Hong J, Kong W Y, Xiao Y J, Yu X W, Zheng H, You S M, Lu J Y, Lei D K, Wang C L, Wang Q M, Liu S J, Liu X, Tian Y L, Chen L M, Jiang L, Zhao Z G, Wu C Y, Wan J M. Earlier Degraded Tapetum1 (EDT1) encodes an ATP-Citrate lyase required for tapetum programmed cell death. Plant Physiol, 2019, 181: 1223-1238.
doi: 10.1104/pp.19.00202
[22] Ko S, Li M, Ku M S, Ho Y, Lin Y, Chuang M, Hsing H, Lien Y, Yang H, Chang H, Chan M. ThebHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell, 2014, 26: 2486-2504.
doi: 10.1105/tpc.114.126292
[23] Fu Z Z, Yu J, Cheng X W, Zong X, Xu J, Chen M J, Li Z Y, Zhang D B, Liang W Q. The rice Basic Helix-Loop-Helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell, 2014, 26: 1512-1524.
doi: 10.1105/tpc.114.123745
[24] Yang Z F, Sun L P, Zhang P P, Zhang Y X, Yu P, Liu L, Abbas A, Xiang X J, Wu W X, Zhan X D, Cao L Y, Cheng S H. TDR INTERACTING PROTEIN 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice. Plant J, 2019, 99: 844-861.
doi: 10.1111/tpj.14365
[25] Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y W, Liang W Q, Zhang D B. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell, 2010, 22: 173-190.
doi: 10.1105/tpc.109.070326
[26] 轩丹丹, 孙廉平, 张沛沛, 张迎信, 吴玮勋, 杨正福, 占小登, 沈希宏, 曹立勇, 程式华. 水稻无花粉型核雄性不育突变体whf41的鉴定与基因定位. 中国水稻科学, 2017, 31: 247-256.
Xuan D D, Sun L P, Zhang P P, Zhang Y X, Wu W X, Yang Z F, Zhan X D, Shen X H, Cao L Y, Cheng S H. Characterization and gene mapping of a no-pollen genic sterile mutant whf41 in rice. Chin J Rice Sci, 2017, 31: 247-256.(in Chinese with English abstract)
[27] Yang X J, Wu D, Shi J X, He Y, Franck P, Bernard G, Yin C S, Zhu L, Chen M J, Luo Z J, Liang W Q, Zhang D B. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Boil, 2014, 56: 979-994.
[28] Yang Z F, Zhang Y X, Sun L P, Zhang P P, Liu L, Yu P, Xuan D D, Xiang X J, Wu W X, Cao L Y, Cheng S H. Identification of cyp703a3-3 and analysis of regulatory role of CYP703A3 in rice anther cuticle and pollen exine development. Gene, 2018, 649: 63-73.
doi: 10.1016/j.gene.2018.01.058
[29] Cao H, Li X Y, Wang Z, Ding M, Sun Y Z, Dong F Q, Chen F Y, Liu L A, Doughty J, Yong Li Y, Liu Y X. Histone H2B Monoubiquitination mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 is involved in anther development by regulating tapetum degradation-related genes in rice. Plant Physiol, 2015, 168: 1389-405.
doi: 10.1104/pp.114.256578
[30] Zhang D S, Liang W Q, Yin C S, Zong J, Gu F W, Zhang D B. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol, 2010, 154: 149-162.
doi: 10.1104/pp.110.158865
[31] Jung K H, Han M J, Lee D Y, Lee Y S, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim Y W, Hwang I, An G. Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell, 2006, 18: 3015-3032.
pmid: 17138699
[32] Luo T, Zou T, Yuan G Q, He Z Y, Li W J, Tao Y, Liu M M, Zhou D, Zhao H F, Zhu J, Liang Y Y, Deng Q M, Wang S Q, Zheng A P, Liu H N, Wang L X, Li P, Li S C. Less and shrunken pollen 1 (LSP1) encodes a member of the ABC transporter family required for pollen wall development in rice (Oryza sativa L.). Crop J, 2020, 8: 492-504.
doi: 10.1016/j.cj.2019.09.001
[33] Wu L, Guan Y S, Wu Z G, Yang K, Lyu J, Converse Richard, Huang Y X, Mao J X, Zhao Y, Wang Z W, Min H Q, Kan D Y, Zhang Y. OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Rep, 2014, 33: 1881-1899.
doi: 10.1007/s00299-014-1666-8
[34] Zhu L, Shi J X, Zhao G C, Zhang D B, Liang W Q. Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J Plant Biol, 2013, 56: 59-68.
doi: 10.1007/s12374-013-0902-z
[35] Niu B X, He F R, He M, Ren D, Chen L T, Liu Y G. The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice. J Integr Plant Biol, 2013, 55: 710-720.
doi: 10.1111/jipb.12053
[36] Zhao G C, Shi J X, Liang W Q, Xue F Y, Luo Q, Zhu L, Qu G R, Chen M J, Schreiber L, Zhang D B. Two ATP binding cassette G transporters, rice ATP Binding Cassette G26 and ATP Binding Cassette G15, collaboratively regulate rice male reproduction. Plant Physiol, 2015, 169: 2064-2079.
[37] Shi J, Tan H X, Yu X H, Liu Y Y, Liang W Q, Kosala R, Benni F R, Lukas S, Wang Y J, Kai G Y, John S, Ma H, Zhang D B. Defective Pollen Wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell, 2011, 23: 2225-2246.
doi: 10.1105/tpc.111.087528
[38] Xu D W, Shi J X, Rautengarten C, Li Y, Qian X L, Uzair M, Zhu L, Luo Q, An G, Waßmann F, Lukas S, Joshua L, Scheller H V, Hu J P, Zhang D B, Liang W Q. Defective Pollen Wall 2 (DPW2) encodes an acyl transferase required for rice pollen development. Plant Physiol, 2017, 173: 240-255.
doi: 10.1104/pp.16.00095
[39] Zhao J, Long T, Wang Y F, Tong X H, Tang J, Li J L, Wang H M, Tang L Q, Li Z Y, Shu Y Z, Liu X X, Li S F, Liu H, Li J L, Wu Y Z, Zhang J. RMS2 encoding a GDSL lipase mediates lipid homeostasis in anthers to determine rice male fertility. Plant Physiol, 2020, 182: 2047-2064.
doi: 10.1104/pp.19.01487
[40] Mondol P C, Xu D W, Lei D, Shi J X, Wang C H, Chen X F, Chen M J, Hu J P, Liang W Q, Zhang D B. DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytol, 2020, 225: 807-822.
doi: 10.1111/nph.16161
[41] Liu Z, Lin S, Shi J X, Yu J, Zhu L, Yang X J, Zhang D B, Liang W Q. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. Plant J, 2017, 91: 263-277.
doi: 10.1111/tpj.13561
[42] Men X, Shi J X, Liang W Q, Zhang Q F, Lian G B, Quan S, Zhu L, Luo Z J, Chen M J, Zhang D B. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice.. J Exp Bot, 2017, 68: 513-526.
[43] Sun L P, Xiang X J, Yang Z F, Yu P, Wen X X, Wang H, Abbas A, Muhammad K R, Zhang Y X, Cheng S H, Cao L Y. OsGPAT3 plays a critical role in anther wall programmed cell death and pollen development in rice. Int J Mol Sci, 2018, 19: 4017.
doi: 10.3390/ijms19124017
[44] Yang X J, Liang W Q, Chen M J, Zhang D B, Zhao X X, Shi J X. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility. Planta, 2017, 246: 105-122.
doi: 10.1007/s00425-017-2691-y
[45] Zhu X L, Yu J, Shi J X, Tohge T, Fernie A R, Meir S, Aharoni A, Xu D W, Zhang D B, Liang W Q. The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice. J Integr Plant Biol, 2017, 59: 612-628.
doi: 10.1111/jipb.12574
[46] Zou T, Liu M X, Xiao Q, Wang T, Chen D, Luo T, Yuan G Q, Li Q, Zhu J, Liang Y Y, Deng Q M, Wang S Q, Zheng A P, Wang L X, Li P, Li S C. OsPKS2 is required for rice male fertility by participating in pollen wall formation. Plant Cell Rep, 2018, 37: 759-773.
doi: 10.1007/s00299-018-2265-x
[47] 周雨露, 林泓, 张大兵, 王灿华, 余婧. 酮类物质合成酶OsPKS1OsPKS2对水稻花粉外壁形成的作用. 中国农业科学, 2019, 52: 1295-1307.
Zhou Y L, Lin H, Zhang D B, Wang C H, Yu J. The function of the polyketide synthase OsPKS1 and OsPKS2 in regulating pollen wall formation in rice. Agric Sci Chin, 2019, 52: 1295-1307.(in Chinese with English abstract)
[48] 陈代波, 占小登, 吴超, 沈希宏, 吴伟明, 高志强, 程式华, 曹立勇. 一个水稻长护颖突变体的遗传分析和基因定位. 作物学报, 2010, 36: 1506-1511.
doi: 10.3724/SP.J.1006.2010.01506
Chen D B, Zhan X D, Wu C, Shen X H, Wu W M, Gao Z Q, Cheng S H, Cao L Y. Genetic analysis and gene mapping of a long empty glumes mutant in rice (Oryza sativa L.). Acta Agron Sin, 2010, 36: 1506-1511. (in Chinese with English abstract)
[49] 初明光, 李双成, 王世全, 邓其明, 张婧, 丁磊, 文勇, 郑爱萍, 周星宇, 李平. 一个水稻雄性不育突变体的遗传分析和基因定位. 作物学报, 2009, 35: 1151-1155.
Chu M G, Li S C, Wang S Q, Deng Q M, Zhang J, Ding L, Wen Y, Zheng A P, Zhou X Y, Li P. Genetic analysis and molecular mapping of a male sterile mutant in rice. Acta Agron Sin, 2009, 35: 1151-1155.(in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01151
[50] Wang D F, Wang H, Liu Q E, Tu R R, Zhou X P, Zhang Y X, Wu W X, Yu P, Chen D B, Zhan X D, Cao L Y, Cheng S H, Shen X H. Reduction of OsMPK6 activity by a R89K mutation induces cell death and bacterial blight resistance in rice. Plant Cell Rep, 2021, 40: 835-850.
doi: 10.1007/s00299-021-02679-4
[51] Tu R R, Wang H, Liu Q E, Wang D F, Zhou X P, Xu P, Zhang Y X, Wu W X, Chen D B, Cao L Y, Cheng S H, Shen X H. Characterization and genetic analysis of the oshpl3 rice lesion mimic mutant showing spontaneous cell death and enhanced bacterial blight resistance. Plant Physiol Biochem, 2020, 154: 94-104.
doi: 10.1016/j.plaphy.2020.05.001
[52] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析. 作物学报, 2021, 47: 2173-2183.
doi: 10.3724/SP.J.1006.2021.02076
Li J L, Li J L, Li X P, An B G, Zeng X, Wu Y Z, Huang P J, Long T. Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice. Acta Agron Sin, 2021, 47: 2173-2183.(in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02076
[53] Chang Z Y, Chen Z F, Wang N, Xie G, Lu J W, Yan W, Zhou J L, Tang X Y, Deng X W, Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA, 2016, 113: 14145-14150.
doi: 10.1073/pnas.1613792113
[54] Song S F, Wang T K, Li Y X, Hu J, Kan R F, Qiu M D, Deng Y D, Liu P X, Zhang L C, Dong H, Li C X, Yu D, Li X Q, Yuan D Y, Yuan L P, Li L. A novel strategy for creating a new system of third eneration hybrid rice technology using a cytoplasmic sterility gene and a genic male: sterile gene. Plant Biotec J, 2021, 19: 251-260.
doi: 10.1111/pbi.13457
[1] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[2] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[3] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机理[J]. 作物学报, 2022, 48(8): 2028-2040.
[4] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[5] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[6] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[7] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[8] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[9] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[10] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[11] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[12] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[13] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[14] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[15] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .