作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1938-1947.doi: 10.3724/SP.J.1006.2022.14155
李胜婷1,**(), 徐远芳1,**(), 常玮1, 刘亚俊2, 谷嫄2, 朱红1, 李加纳1,3,4, 卢坤1,3,4,*()
LI Sheng-Ting1,**(), XU Yuan-Fang1,**(), CHANG Wei1, LIU Ya-Jun2, GU Yuan2, ZHU Hong1, LI Jia-Na1,3,4, LU Kun1,3,4,*()
摘要:
开花时间是作物的重要农艺指标, 关系着作物的生育周期和产量。糖转运体作为植物重要的碳水化合物运输载体, 作用于油菜开花时间的研究鲜有报道。本研究在油菜FOX-Hunting文库中鉴定了一个与油菜开花相关的蔗糖转运蛋白Bna.C02SWEET15, 通过组织表达和亚细胞定位分析, 转基因和突变体表型观察, 开花关键基因表达水平检测等解析其生物学功能与调控机制。Bna.C02SWEET15在油菜各组织部位均能够表达, 在花后30 d种子中最显著。Bna.C02SWEET15定位于细胞膜, 启动子活性主要在花药和花后30 d种子中。在拟南芥中过表达Bna.C02SWEET15使植株开花提前, 利于植株开花的光周期关键基因CO、FT、LFY表达明显上升, 负调控基因FLC表达量降低。拟南芥突变体atsweet15a和RNAi-Bna.C02SWEET15转基因油菜均为晚花表型。推测Bna.C02SWEET15能够通过光周期途径正向调控油菜开花时间影响油菜的生育周期。研究结果对理解糖转运体在作物中的调控作用, 为油菜高产育种提供了基因资源, 奠定了理论基础。
[1] |
Blümel M, Dally N, Jung C. Flowering time regulation in crops- what did we learn from Arabidopsis? Curr Opin Biotechnol, 2015, 32: 121-129.
doi: 10.1016/j.copbio.2014.11.023 |
[2] |
Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, E. Lunn J, Stitt M, Schmid M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science, 2013, 339: 704-707.
doi: 10.1126/science.1230406 |
[3] |
Atsuko K, René R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. J Exp Bot, 2020, 71: 2490-2504.
doi: 10.1093/jxb/eraa057 |
[4] |
Wang T Y, Ping X K, Cao Y R, Jian H J, Gao Y M, Wang J, Tan Y C, Xu X F, Lu K, Li J N, Liu L Z. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol, 2019, 19: 336.
doi: 10.1186/s12870-019-1936-2 |
[5] |
Rolland F, Baenagonzalez E, Sheen J. SUGAR SENSING AND SIGNALING IN PLANTS: conserved and novel mechanisms. Annu Rev Plant Biol, 2006, 57: 675-709.
pmid: 16669778 |
[6] |
Rolland F, Sheen J. Sugar sensing and signaling networks in plants. Biochem Soc Trans, 2005, 33: 269-271.
doi: 10.1042/BST0330269 |
[7] |
Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 2010, 13: 273-278.
doi: 10.1016/j.pbi.2009.12.002 |
[8] | Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Front Plant Sci, 2016, 7: 1464. |
[9] |
López-Coria M, Sánchez-Sánchez T, Martínez-Marcelo V H, Aguilera-Alvarado G P, Flores-Barrera M, King-Díaz B, Sánchez N S. SWEET transporters for the nourishment of embryonic tissues during maize germination. Genes, 2019, 10: 780.
doi: 10.3390/genes10100780 |
[10] |
Buendía-Monreal M, Gillmor C S. Convergent repression of miR156 by sugar and the CDK8 module of Arabidopsis mediator. Dev Biol, 2017, 423: 19-23.
doi: S0012-1606(16)30267-6 pmid: 28108181 |
[11] |
Lemoine R. Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta, 2000, 1465: 246-262.
pmid: 10748258 |
[12] |
Williams L E, Lemoine R, Sauer N. Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends Plant Sci, 2000, 5: 283-290.
pmid: 10871900 |
[13] |
Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-534.
doi: 10.1038/nature09606 |
[14] |
Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-210.
doi: 10.1126/science.1213351 |
[15] |
Talbot N J. Raiding the sweet shop. Nature, 2010, 468: 510-511.
doi: 10.1038/468510a |
[16] |
Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life, 2015, 67: 461-471.
doi: 10.1002/iub.1394 pmid: 26179993 |
[17] |
Seo P J, Ryu J, Kang S K, Park C M. Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J, 2011, 65: 418-429.
doi: 10.1111/j.1365-313X.2010.04432.x |
[18] |
Chen L Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol, 2014, 201: 1150-1155.
doi: 10.1111/nph.12445 |
[19] | 张凯, 魏丝雨, 常玮, 范永海, 卢坤. 甘蓝型油菜全基因组cDNA FOX-hunting过表达文库构建. 中国油料作物学报, 2021, 43: 435-442. |
Zhang K, Wei S Y, Chang W, Fan Y H, Lu K. Construction of whole genome full-length cDNA FOX-hunting overexpression library in Brassica napus. Chin J Oil Crop Sci, 2021, 43: 435-442. (in Chinese with English abstract) | |
[20] | Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M N, Fan Y H, Ma J Q, Sun W, Qu C M, Liu L Z, Li N N, Liang Y, Wang R, Qian W, Tang Z L, Xu X F, Lei B, Zhang K, Li J N. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res, 2018, 46: D1229-D1236. |
[21] |
Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K M, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2010, 45: 616-629.
doi: 10.1111/j.1365-313X.2005.02617.x |
[22] | 马丽娟, 冯瑜, 江丽萍, 申敏, 柴友荣. pFGC5941的改造及芸薹属透明种1基因(TT1)家族RNA干扰载体构建. 农业生物技术学报, 2010, 18: 1189-1196. |
Ma L J, Feng Y, Jiang L P, Shen M, Chai Y R. Modification of pFGC5941 and construction of RNAi vector of Brassica transparent testa 1 gene (TT1) family. J Agric Biotcchnol, 2010, 18: l189-1196. (in Chinese with English abstract) | |
[23] | 刘询, 张斌, 李浪, 刘春林, 阮颖. 甘蓝型油菜BnaLCR23基因CRISPR-Cas9表达载体的构建及遗传转化. 分子植物育种, 2017, 15: 3024-3029. |
Liu X, Zhang B, Li L, Liu C L, Ruan Y. Construction and genetic transformation of BnaLCR23 gene CRISPR-Cas9 expression vector in Brassica napus L. Mol Plant Breed, 2017, 15: 3024-3029. (in Chinese with English abstract) | |
[24] | Chao H Y, Li T, Luo C, Huang H L, Ruan Y F, Li X D, Niu Y, Fan Y H, Sun W, Zhang K, Li J N, Qu C M, Lu K. BrassicaEDB: a gene expression database for Brassica crops. Int J Mol Sci, 2020, 13: 5831. |
[25] |
Zheng Q M, Tang Z, Xu Q, Deng X X. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis). Plant Cell Tissue Organ Cult, 2014, 119: 609-624.
doi: 10.1007/s11240-014-0560-y |
[26] |
Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seoet M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun, 2016, 7: 13245.
doi: 10.1038/ncomms13245 pmid: 27782132 |
[27] |
Coneva V, Guevara D, Rothstein S J, Colasanti J. Transcript and metabolite signature of maize source leaves suggest a link between transitory starch to sucrose balance and the autonomous floral transition. J Exp Bot, 2012, 63: 5079-5092.
doi: 10.1093/jxb/ers158 |
[28] |
Klemens P A W, Patzke K, Deitmer J, Spinner L, Hir R L, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol, 2013, 163: 1338-1352.
doi: 10.1104/pp.113.224972 |
[29] |
Chincinska I A, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kühn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol, 2008, 146: 515-528.
doi: 10.1104/pp.107.112334 pmid: 18083796 |
[30] |
Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 2002, 14: S111-S130.
doi: 10.1105/tpc.001362 |
[31] |
Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol, 2004, 55: 521-535.
doi: 10.1146/annurev.arplant.55.031903.141644 |
[32] |
Bäurle I, Dean C. The timing of developmental transitions in plants. Cell, 2006, 125: 655-664.
doi: 10.1016/j.cell.2006.05.005 |
[33] |
Flowers J M, Hanzawa Y, Hall M C, Moore R C, Purugganan M D. Population genomics of the Arabidopsis thaliana flowering time gene network. Mol Biol Evol, 2009, 26: 2475-2486.
doi: 10.1093/molbev/msp161 |
[34] |
Blackman B K, Rasmussen D A, Strasburg J L, Raduski A R, Burke J M, Knapp S J, Michaels S D, Rieseberg L H. Contributions of flowering time genes to sunflower domestication and improvement. Genetics, 2010, 187: 271-287.
doi: 10.1534/genetics.110.121327 |
[1] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[2] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[3] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[4] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[5] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[6] | 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[11] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[12] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[13] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[14] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[15] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
|