欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1938-1947.doi: 10.3724/SP.J.1006.2022.14155

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Bna.C02SWEET15通过光周期途径正向调控油菜开花时间

李胜婷1,**(), 徐远芳1,**(), 常玮1, 刘亚俊2, 谷嫄2, 朱红1, 李加纳1,3,4, 卢坤1,3,4,*()   

  1. 1西南大学农学与生物科技学院, 重庆 400715
    2云南省临沧市农业技术推广站, 云南临沧 677099
    3南方山地农业教育部工程研究中心, 重庆 400715
    4西南大学农业科学研究院, 重庆 400715
  • 收稿日期:2021-08-26 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-16
  • 通讯作者: 卢坤
  • 作者简介:李胜婷, E-mail: lishengting0123@163.com;
    徐远芳, E-mail: 1095245283@qq.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家自然科学基金项目(31871653);国家重点研发计划项目(2018YFD0100500);高等学校学科创新引智基地项目111(B12006);重庆市自然科学基金项目(cstc2021ycjh-bgzxm0033);重庆市研究生科研创新项目(CYB21115);西南大学种质创制专项资助。

Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway

LI Sheng-Ting1,**(), XU Yuan-Fang1,**(), CHANG Wei1, LIU Ya-Jun2, GU Yuan2, ZHU Hong1, LI Jia-Na1,3,4, LU Kun1,3,4,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2Agricultural Technology Extension Station in Lincang City, Lincang 677099, Yunnan, China
    3Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
    4Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2021-08-26 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-16
  • Contact: LU Kun
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31871653);National Key Research and Development Program of China(2018YFD0100500);Project of Intellectual Base for Discipline Innovation in Colleges and Universities(B12006);Key Project of Chongqing Natural Science Foundation(cstc2021ycjh-bgzxm0033);Chongqing Postgraduate Research Innovation Project(CYB21115);Germplasm Creation Special Program of Southwest University

摘要:

开花时间是作物的重要农艺指标, 关系着作物的生育周期和产量。糖转运体作为植物重要的碳水化合物运输载体, 作用于油菜开花时间的研究鲜有报道。本研究在油菜FOX-Hunting文库中鉴定了一个与油菜开花相关的蔗糖转运蛋白Bna.C02SWEET15, 通过组织表达和亚细胞定位分析, 转基因和突变体表型观察, 开花关键基因表达水平检测等解析其生物学功能与调控机制。Bna.C02SWEET15在油菜各组织部位均能够表达, 在花后30 d种子中最显著。Bna.C02SWEET15定位于细胞膜, 启动子活性主要在花药和花后30 d种子中。在拟南芥中过表达Bna.C02SWEET15使植株开花提前, 利于植株开花的光周期关键基因COFTLFY表达明显上升, 负调控基因FLC表达量降低。拟南芥突变体atsweet15a和RNAi-Bna.C02SWEET15转基因油菜均为晚花表型。推测Bna.C02SWEET15能够通过光周期途径正向调控油菜开花时间影响油菜的生育周期。研究结果对理解糖转运体在作物中的调控作用, 为油菜高产育种提供了基因资源, 奠定了理论基础。

关键词: 甘蓝型油菜, Bna.C02SWEET15, 光周期, 开花

Abstract:

Flowering time, an important agronomic index of crops, is related to the growth cycle and the yield of crops. Sugar transporters are important carbohydrate transporters in plants, whereas there are few reports on the effect of sugar transporters on flowering time in rapeseed (Brassica napus). In this study, sucrose transporter Bna.C02SWEET15 related to flowering in rapeseed were screened and identified from Fox-Hunting library, whose biological function and regulation mechanism were further characterized through expression pattern and subcellular localization analysis, phenotype analysis in transgenic plants and mutant, detection of marker genes expression related to flowering. Bna.C02SWEET15 could be identified in all tissues of Brassica napus, and the relative expression level was the most significant in seeds at 30 days after flowering. Bna.C02SWEET15 was located in cell membrane, and the promoter activity was mainly in anther and seed at 30 days after flowering. Overexpression of Bna.C02SWEET15 in Arabidopsis resulted in flowering in advance and increased the expression of photoperiod key genes CO, FT, and LFY, while decreased the expression of negative regulation gene FLC. In addition, the flowering time of atsweet15a and transgenic RNAi-Bna.C02SWEET15 were later. We proposed that Bna.C02SWEET15 could positively regulate the flowering time through photoperiod pathway, thus affecting the growth cycle and final yield in rapeseed. These results provide important basis for understanding the regulatory role of sugar transporters in crops and lay a theoretical foundation for understanding the regulatory role of sugar transporters in crops.

Key words: Brassica napus, Bna.C02SWEET15, photoperiod, flowering

附表1

本研究中所用引物"

引物名称
Prime name
引物序列
Primer sequences (5'-3')
26S-F rRNA CACAATGATAGGAAGAGCCGAC
26S-R rRNA CAAGGGAACGGG CTTGGCAGAATC
BnaActin7-F TGGGTTTGCTGGTGACGAT
BnaActin7-R TGCCTAGGACGACCAACAATACT
qRT F-BnaSWEET15 TCCTTGTATTCCTCGCTCCC
qRT R-BnaSWEET15 CAGCCGAAAGAGTTGATGGT
OV-SWEET15 F CACCATGAGTTTGGCACACCAAAT
OV-SWEET15 R ATGCCTGAGAGCTTCTTGCAC
Bna.C02SWEET15-PRO-F acctgcaggcatgcaACAGACCTCGTTTCTATAGCTATCT
Bna.C02SWEET15-PRO-R taccctcagatctaccatggAAACTAATGAGTCTCAGGTGGTGT
F Hyg CTATTTCTTTGCCCTCGGACGA
R Hyg ATGAAAAAGCCTGAACTCACCGCG
F35S3ND GGAAGTTCATTTCATTTGGAGAG
OCS5ND CGATCATAGGCGTCTCGCATATCTC
F Bar CGACATCCGCCGTGCCACCGA
R Bar GTACCGGCAGGCTGAAGTCCAGC
Actin real F GGTAACATTGTGCTCAGTGGTGG
Actin real R AACGACCTTAATCTTCATGCTGC
qRT F-AtSWEET15 CATAGCCATGTTCTTCGCTTAC
qRT R-AtSWEET15 CTTTGTCTTTATCACACGAGCC
M13pF ACACAGGAAACAGCTATGACCAT
M13pR GGGTCCTAACCAAGAAAATGAA
RNAi-SWEET15-F GGATCCGACGTCTCTCCCATACCAACATTCATAACA
RNAi-SWEET15-R TCTAGACCATGGATAGTATAAGCTGTACTACT
BnaPAP2-F GGATCCACCTAAGCATGCATTTGAAAA
BnaPAP2-R ATTTAAATGACGTCAGGTTTACATTCAAGACACA
引物名称
Prime name
引物序列
Primer sequences (5'-3')
F35S3N GGAAGTTCATTTCATTTGGAGAG
ROCST5N GCTCAGGTTTTTTACAACGTGCAC
CO real F GCCATCAGCGAGTTCCAATTCTAC
CO real R CCTTCCTCTTGATCCACCACCAG
FLC real F CGTCGCTCTTCTCGTCGTCTC
FLC real R TTCGGTCTTCTTGGCTCTAGTCAC
FT real R GCCTGCCAAGCTGTCGAAACAATA
FT real F TCCCTGCTACAACTGGAACAACCT
LFY real F TCCACTGCCTAGACGAAGAAGC
LFY real R TCCCAGCCATGACGACAAGC
N674321-LP CAGCCGAGTACAGAGACTTGG
N674321-RP TTTCCTCGCTTTTATCTTCGG
LBb1.3 ATTTTGCCGATTTCGGAAC

图1

甘蓝型油菜Bna.C02SWEET15的组织表达分析 A: qRT-PCR检测甘蓝型油菜中Bna.C02SWEET15的表达模式。R: 根; St: 茎; L: 叶; F: 花; MB: 主蕾; 5D-S、10D-S: 花后5 d和10 d角果; 15D-SE、21D-SE、30D-SE: 花后15、21和30 d的种子; 15D-SW、21D-SW、30D-SW: 花后15、21和30 d的种皮。B: proBna.C02WEET15::GUS的组织化学染色。a: 萌发种皮; b: 幼苗; c: 莲座; d: 茎叶; e: 花药; f: 角果; g: 根; h: 30 d种子。"

图2

Bna.C02SWEET15-YFP融合蛋白的亚细胞定位 标尺为20 μm。"

图3

Bna.C02SWEET15过表达转基因植株表型观察及标志基因表达量检测 A: Bna.C02SWEET15转基因植株表型观察; 标尺为1 cm。B: qRT-PCR检测转基因植株基因的表达量; C: Bna.C02SWEET15转基因植株开花时间统计; D: 开花途径标志基因表达量检测。*、**分别表示在0.05和0.01水平上显著差异。"

图4

拟南芥突变体atsweet15表型观察 A: AtSWEET15和Bna.C02SWEET15序列相似性; B: 拟南芥突变体T-DNA插入位点示意图; C: atsweet15a表型观察; D: qRT-PCR检测突变体中基因表达量。标尺为1 cm。**表示在0.01水平上显著差异。"

图5

RNAi-Bna.C02SWEET15转基因油菜表型观察 A: RNAi-Bna.C02SWEET15表型观察; B: qRT-PCR检测转基因植株基因表达量; C: RNAi-Bna.C02SWEET15转基因植株开花时间统计。标尺为10 cm。**表示在0.01水平上显著差异。"

[1] Blümel M, Dally N, Jung C. Flowering time regulation in crops- what did we learn from Arabidopsis? Curr Opin Biotechnol, 2015, 32: 121-129.
doi: 10.1016/j.copbio.2014.11.023
[2] Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, E. Lunn J, Stitt M, Schmid M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science, 2013, 339: 704-707.
doi: 10.1126/science.1230406
[3] Atsuko K, René R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. J Exp Bot, 2020, 71: 2490-2504.
doi: 10.1093/jxb/eraa057
[4] Wang T Y, Ping X K, Cao Y R, Jian H J, Gao Y M, Wang J, Tan Y C, Xu X F, Lu K, Li J N, Liu L Z. Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development. BMC Plant Biol, 2019, 19: 336.
doi: 10.1186/s12870-019-1936-2
[5] Rolland F, Baenagonzalez E, Sheen J. SUGAR SENSING AND SIGNALING IN PLANTS: conserved and novel mechanisms. Annu Rev Plant Biol, 2006, 57: 675-709.
pmid: 16669778
[6] Rolland F, Sheen J. Sugar sensing and signaling networks in plants. Biochem Soc Trans, 2005, 33: 269-271.
doi: 10.1042/BST0330269
[7] Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 2010, 13: 273-278.
doi: 10.1016/j.pbi.2009.12.002
[8] Jian H J, Lu K, Yang B, Wang T Y, Zhang L, Zhang A X, Wang J, Liu L Z, Qu C M, Li J N. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Front Plant Sci, 2016, 7: 1464.
[9] López-Coria M, Sánchez-Sánchez T, Martínez-Marcelo V H, Aguilera-Alvarado G P, Flores-Barrera M, King-Díaz B, Sánchez N S. SWEET transporters for the nourishment of embryonic tissues during maize germination. Genes, 2019, 10: 780.
doi: 10.3390/genes10100780
[10] Buendía-Monreal M, Gillmor C S. Convergent repression of miR156 by sugar and the CDK8 module of Arabidopsis mediator. Dev Biol, 2017, 423: 19-23.
doi: S0012-1606(16)30267-6 pmid: 28108181
[11] Lemoine R. Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta, 2000, 1465: 246-262.
pmid: 10748258
[12] Williams L E, Lemoine R, Sauer N. Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends Plant Sci, 2000, 5: 283-290.
pmid: 10871900
[13] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-534.
doi: 10.1038/nature09606
[14] Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-210.
doi: 10.1126/science.1213351
[15] Talbot N J. Raiding the sweet shop. Nature, 2010, 468: 510-511.
doi: 10.1038/468510a
[16] Chandran D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life, 2015, 67: 461-471.
doi: 10.1002/iub.1394 pmid: 26179993
[17] Seo P J, Ryu J, Kang S K, Park C M. Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J, 2011, 65: 418-429.
doi: 10.1111/j.1365-313X.2010.04432.x
[18] Chen L Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol, 2014, 201: 1150-1155.
doi: 10.1111/nph.12445
[19] 张凯, 魏丝雨, 常玮, 范永海, 卢坤. 甘蓝型油菜全基因组cDNA FOX-hunting过表达文库构建. 中国油料作物学报, 2021, 43: 435-442.
Zhang K, Wei S Y, Chang W, Fan Y H, Lu K. Construction of whole genome full-length cDNA FOX-hunting overexpression library in Brassica napus. Chin J Oil Crop Sci, 2021, 43: 435-442. (in Chinese with English abstract)
[20] Lu K, Li T, He J, Chang W, Zhang R, Liu M, Yu M N, Fan Y H, Ma J Q, Sun W, Qu C M, Liu L Z, Li N N, Liang Y, Wang R, Qian W, Tang Z L, Xu X F, Lei B, Zhang K, Li J N. qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res, 2018, 46: D1229-D1236.
[21] Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K M, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2010, 45: 616-629.
doi: 10.1111/j.1365-313X.2005.02617.x
[22] 马丽娟, 冯瑜, 江丽萍, 申敏, 柴友荣. pFGC5941的改造及芸薹属透明种1基因(TT1)家族RNA干扰载体构建. 农业生物技术学报, 2010, 18: 1189-1196.
Ma L J, Feng Y, Jiang L P, Shen M, Chai Y R. Modification of pFGC5941 and construction of RNAi vector of Brassica transparent testa 1 gene (TT1) family. J Agric Biotcchnol, 2010, 18: l189-1196. (in Chinese with English abstract)
[23] 刘询, 张斌, 李浪, 刘春林, 阮颖. 甘蓝型油菜BnaLCR23基因CRISPR-Cas9表达载体的构建及遗传转化. 分子植物育种, 2017, 15: 3024-3029.
Liu X, Zhang B, Li L, Liu C L, Ruan Y. Construction and genetic transformation of BnaLCR23 gene CRISPR-Cas9 expression vector in Brassica napus L. Mol Plant Breed, 2017, 15: 3024-3029. (in Chinese with English abstract)
[24] Chao H Y, Li T, Luo C, Huang H L, Ruan Y F, Li X D, Niu Y, Fan Y H, Sun W, Zhang K, Li J N, Qu C M, Lu K. BrassicaEDB: a gene expression database for Brassica crops. Int J Mol Sci, 2020, 13: 5831.
[25] Zheng Q M, Tang Z, Xu Q, Deng X X. Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis). Plant Cell Tissue Organ Cult, 2014, 119: 609-624.
doi: 10.1007/s11240-014-0560-y
[26] Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seoet M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun, 2016, 7: 13245.
doi: 10.1038/ncomms13245 pmid: 27782132
[27] Coneva V, Guevara D, Rothstein S J, Colasanti J. Transcript and metabolite signature of maize source leaves suggest a link between transitory starch to sucrose balance and the autonomous floral transition. J Exp Bot, 2012, 63: 5079-5092.
doi: 10.1093/jxb/ers158
[28] Klemens P A W, Patzke K, Deitmer J, Spinner L, Hir R L, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol, 2013, 163: 1338-1352.
doi: 10.1104/pp.113.224972
[29] Chincinska I A, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kühn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol, 2008, 146: 515-528.
doi: 10.1104/pp.107.112334 pmid: 18083796
[30] Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 2002, 14: S111-S130.
doi: 10.1105/tpc.001362
[31] Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol, 2004, 55: 521-535.
doi: 10.1146/annurev.arplant.55.031903.141644
[32] Bäurle I, Dean C. The timing of developmental transitions in plants. Cell, 2006, 125: 655-664.
doi: 10.1016/j.cell.2006.05.005
[33] Flowers J M, Hanzawa Y, Hall M C, Moore R C, Purugganan M D. Population genomics of the Arabidopsis thaliana flowering time gene network. Mol Biol Evol, 2009, 26: 2475-2486.
doi: 10.1093/molbev/msp161
[34] Blackman B K, Rasmussen D A, Strasburg J L, Raduski A R, Burke J M, Knapp S J, Michaels S D, Rieseberg L H. Contributions of flowering time genes to sunflower domestication and improvement. Genetics, 2010, 187: 271-287.
doi: 10.1534/genetics.110.121327
[1] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[2] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[3] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644.
[4] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[5] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[6] 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[11] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[12] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[15] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .