作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2727-2737.doi: 10.3724/SP.J.1006.2023.24210
杨豪1(), 向仕华2(), 刘丽1, 宁可君1, 杨雪1, 舒英杰1, 何庆元1()
YANG Hao1(), XIANG Shi-Hua2(), LIU Li1, NING Ke-Jun1, YANG Xue1, SHU Ying-Jie1, HE Qing-Yuan1()
摘要:
生育期是大豆品种适应生态环境进化的结果, 对产量和农艺性状都有重要影响。解析南方, 特别是挖掘川渝地区大豆生育期相关遗传位点并筛选出候选基因, 能为该地区大豆育种奠定一定的理论基础。以川渝地区227份大豆品种或资源为试验材料, 利用135个SSR标记和107,081个有效SNPs标记进行基因分型, 分别考察及统计了2016年安徽凤阳和四川自贡、2018年安徽凤阳3个环境的营养生长期、生殖生长期、全生育期以及营养生长/生殖生长期比值。川渝大豆4个性状的表型分布整体呈正态分布, 遗传变异受品种、环境和环境互作的显著影响。通过全基因关联分析, 使用SSR标记共检测到51个与生育期性状显著关联的位点, 使用SNP标记检测到70个与生育期性状显著关联的位点。其中在2个以上的环境下同时被检测的区域有: 位于13号染色体BLK_29175719-29275719和BLK_30878620_30978620, 14号染色体BLK_48763386_48863386以及16号染色体BLK_10093551_10293551区块, 在这4个区域内预测到11个与植物生长发育有关的可能候选基因, 同源基因预测表明6个与生育调控相关, 进一步的单倍型分析表明有3个基因单倍型在生育期性状表型上存在显著差异, 分别是Glyma.13g177600、Glyma.13g178500和Glyma.13g195200。
[1] |
Zhang Y H, Liu M F, He J B, Wang Y F, Xing N G, Li Y, Yang S P, Zhao T J, Gai J Y. Marker-assisted breeding for transgressive seed protein content soybean [Glycine max (L.) Merr.]. Theor Appl Genet, 2015, 128: 1061-1072.
doi: 10.1007/s00122-015-2490-4 pmid: 25754423 |
[2] |
Jia H C, Jiang B J, Wu C X, Lu W C, Hou W S, Sun S, Yan H R, Han T F. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS One, 2014, 9: e94139.
doi: 10.1371/journal.pone.0094139 |
[3] |
Tasma I M, Shoemaker R C. Mapping flowering time gene homologs in soybean and their association with maturity (E) loci. Crop Sci, 2003, 43: 319-328.
doi: 10.2135/cropsci2003.0319 |
[4] |
Bernard R L. Two major genes for time of flowering and maturity in soybeans. Crop Sci, 1971, 11: 242-244.
doi: 10.2135/cropsci1971.0011183X001100020022x |
[5] |
Abe J, Xu D H, Miyano A, Komatsu K, Kanazawa A, Shimamoto Y. Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci, 2003, 43: 1300-1304.
doi: 10.2135/cropsci2003.1300 |
[6] |
Buzzell R I. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol, 1971, 13: 703-707.
doi: 10.1139/g71-100 |
[7] | Buzzell R I, Voldeng H D. Inheritance of insensitivity to long daylength. Soybean Genet Newsl, 1980, 7: 26-29. |
[8] |
McBlain B A, Bernard R L. A new gene affecting the time of flowering and maturity in soybeans. J Hered, 1987, 78: 160-162.
doi: 10.1093/oxfordjournals.jhered.a110349 |
[9] |
Bonato E R, Vello N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999, 22: 229-232.
doi: 10.1590/S1415-47571999000200016 |
[10] |
Cober E R, Voldeng H D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci, 2001, 41: 698-701.
doi: 10.2135/cropsci2001.413698x |
[11] |
Cober E R, Molnar S J, Charette M, Harvey D. A new locus for early maturity in soybean. Crop Sci, 2010, 50: 524-527.
doi: 10.2135/cropsci2009.04.0174 |
[12] |
Zhao C, Takeshima R, Zhu J H, Xu M L, Sato M, Watanabe S, Kanazawa A, Liu B H, Kong F J, Yamada T, Abe J. A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a FLOWERING LOCUS T ortholog. BMC Plant Biol, 2016, 16: 20.
doi: 10.1186/s12870-016-0704-9 pmid: 26786479 |
[13] |
Samanfar B, Molnar S J, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober E R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet, 2017, 130: 377-390.
doi: 10.1007/s00122-016-2819-7 pmid: 27832313 |
[14] |
Ray J D, Hinson K, Mankono J E B, Malo F M. Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995, 35: 1001-1006.
doi: 10.2135/cropsci1995.0011183X003500040012x |
[15] |
Lin X, Liu B, Weller J L, Abe J, Kong F J. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. J Integr Plant Biol, 2021, 63: 981-994.
doi: 10.1111/jipb.13021 |
[16] |
Doyle J J. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13-15.
doi: 10.1103/PhysRevFocus.12.13 |
[17] |
Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128.
doi: 10.1007/s00122-004-1602-3 pmid: 14991109 |
[18] |
He Q Y, Yang H Y, Xiang S H, Tian D, Wang W B, Zhao T J, Gai J Y. Fine mapping of the genetic locus L1 conferring black pods using a chromosome segment substitution line population of soybean. Plant Breed, 2015, 134: 437-445.
doi: 10.1111/pbr.2015.134.issue-4 |
[19] |
He Q Y, Xiang S H, Yang H W, Wang W B, Shu Y J, Li Z P, Yang X Y, Wang S H. A genome-wide association study of seed size, protein content, and oil content using a natural population of Sichuan and Chongqing soybean. Euphytica, 2021, 217: 198.
doi: 10.1007/s10681-021-02931-8 |
[20] |
Tasma I M, Lorenzen L L, Green D E, Shoemaker R C. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breed, 2001, 8: 25-35.
doi: 10.1023/A:1011998116037 |
[21] |
Li M M, Liu Y, Tao Y H, Xu C J, Li X, Zhang X M, Han Y P, Yang X, Sun J Z, Li W B, Li D M, Zhao X, Zhao X. Identification of genetic loci and candidate genes related to soybean flowering through genome wide association study. BMC Genomics, 2019, 20: 987.
doi: 10.1186/s12864-019-6324-7 pmid: 31842754 |
[22] | 杨倩, 张惠君, 谢甫绨. 不同来源大豆品种生育期结构与产量关系的研究. 大豆科学, 2008, 27: 973-978. |
Yang Q, Zhang H J, Xie F T. Study on the relationship between fertility structure and yield of soybean varieties of different origins. Soybean Sci, 2008, 27: 973-978. (in Chinese with English abstract) | |
[23] | 吴艳, 侯智红, 程群, 董利东, 卢思佳, 南海洋, 甘卓然, 林永波. 大豆GmSPL3基因家族功能初探. 大豆科学, 2019, 38: 694-703. |
Wu Y, Hou Z H, Cheng Q, Dong L D, Lu S J, Nan H Y, Gan Z R, Lin Y B. A preliminary investigation of the function of the GmSPL3 gene family in soybean. Soybean Sci, 38: 694-703. (in Chinese with English abstract) | |
[24] |
Ward J M, Cufr C A, Neff D M M. The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis. Plant Cell, 2005, 17: 475-485.
doi: 10.1105/tpc.104.027722 |
[25] |
Dong Y, Wang C P, Han X, Tang S, Liu S, Xia X L, Yin W L. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem Biophys Res Commun, 2014, 450: 453-458.
doi: 10.1016/j.bbrc.2014.05.139 |
[26] | Zhao Q, Xiang X H, Liu D, Yang A G, Wang Y Y. Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Front Recent Dev Plant Sci, 2018, 9: 381. |
[27] |
Zhu Z G, Liang H L, Chen G P, Li F F, Wang Y S, Liao C G, Hu Z L. The bHLH transcription factor SlPRE2 regulates tomato fruit development and modulates plant response to gibberellin. Plant Cell Rep, 2019, 38: 1053-1064.
doi: 10.1007/s00299-019-02425-x pmid: 31123809 |
[28] |
Jing Y, Lin R. The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiol, 2015, 169: 371-378.
doi: 10.1104/pp.15.00788 pmid: 26220951 |
[29] |
Jiménez-López D, Muñóz-Belman F, González-Prieto J M, Victor Aguilar-Hernández, Plinio G. Repertoire of plant RING E3 ubiquitin ligases revisited: new groups counting gene families and single genes. PLoS One, 2018, 13: e0203442.
doi: 10.1371/journal.pone.0203442 |
[30] |
Causier B, Ashworth M, Guo W, Davies B. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol, 2012, 158: 423-438.
doi: 10.1104/pp.111.186999 pmid: 22065421 |
[1] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[2] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[3] | 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859. |
[4] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[5] | 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600. |
[6] | 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732. |
[7] | 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572. |
[8] | 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714. |
[9] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[10] | 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652. |
[11] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[12] | 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196. |
[13] | 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183. |
[14] | 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064. |
[15] | 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150. |
|