欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2886-2901.doi: 10.3724/SP.J.1006.2023.21085

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦旗叶形态相关性状全基因组关联分析

王睿1,2, 任毅1,2, 程宇坤1,2, 王伟1,2,3, 张志辉1,2, 耿洪伟1,2,*   

  1. 1新疆农业大学农学院 / 新疆农业大学优质专用麦类作物工程技术研究中心, 新疆乌鲁木齐 830052
    2新疆小麦产业体系创新团队, 新疆乌鲁木齐 830052
    3安阳工学院计算机科学与信息工程系, 河南安阳 455000
  • 收稿日期:2022-12-26 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-05
  • 通讯作者: 耿洪伟, E-mail: hw-geng@163.com
  • 作者简介:E-mail: 506829570@qq.com
  • 基金资助:
    新疆自治区重点研发任务专项项目(2022B02001-3)

Genome-wide association analysis of morphological traits of flag leaf in wheat

WANG Rui1,2, REN Yi1,2, CHENG Yu-Kun1,2, WANG Wei1,2,3, ZHANG Zhi-Hui1,2, GENG Hong-Wei1,2,*   

  1. 1College of Agronomy / Special High Quality Triticeae Crops Engineering and Technology Research Center, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Xinjiang Wheat Industry System Innovation Team, Urumqi 830052, Xinjiang, China
    3Department of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
  • Received:2022-12-26 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-05
  • Supported by:
    Special Project of Key Research and Development Task of Xinjiang Autonomous Region(2022B02001-3)

摘要:

小麦旗叶是进行光合作用的主要功能叶, 对产量有着重要贡献。为了解小麦旗叶形态的遗传机制, 挖掘旗叶形态相关性状的候选基因, 本研究采用300份小麦品种(系), 结合90K SNP基因芯片对5种环境下正常灌溉(NI)和干旱胁迫(DS)条件下的旗叶长、宽、面积进行全基因组关联分析。结果表明, 旗叶长、宽、面积在2种水分处理下表现出显著差异(P<0.05), 在不同的环境下表现出丰富的表型变异, 变异系数为0.07~0.23。全基因组关联分析(genome- wide association study, GWAS)结果显示, 共检测到37个与旗叶长、宽、面积显著相关的稳定遗传位点, 分布于1D、2A、2B、3A、3D、4A、5A、5B、6A、6B、7A、7B染色体上, 单个SNP位点可解释遗传变异为3.70%~9.05%, 其中正常灌溉下检测到22个稳定遗传位点, 干旱胁迫下检测到15个稳定遗传位点。2种处理下共同检测到的稳定遗传位点有8个, 位于2B、3A、5A、6A、7A、7B染色体上。在2B、3A、6A、7A染色体上检测到5个同时与多个性状相关联的稳定遗传位点。对稳定遗传且贡献率较大的标记处进行单倍型分析, 发现与旗叶长显著相关的Kukri_ c1406_275 (R2=9.05%)标记存在FLL-Hap1、FLL-Hap2和FLL-Hap3三种单倍型, 与旗叶面积显著相关的wsnp_ bq170165A_Ta_1_1 (R2=7.88%)标记同样存在FLA-Hap1、FLA-Hap2和FLA-Hap3三种单倍型。结合表型分析, 在300份冬小麦品种(系)中含有FLL-Hap1 (出现频率为77.78%)或FLL-Hap2 (18.89%)单倍型品种(系)的旗叶长显著高于含有FLL-Hap3 (3.33%)单倍型品种(系)的旗叶长, 含有FLA-Hap1 (48.19%)单倍型品种(系)的旗叶面积显著高于含有FLA-Hap2 (30.80%)或FLA-Hap3 (21.01%)单倍型品种(系)的旗叶面积(P<0.05)。不同单倍型在不同冬小麦品种(系)中分布不同, 单倍型FLL-Hap1在国外品种(系)占比较大, 单倍型FLL-Hap2、FLL-Hap3分别在北部冬麦区和西南冬麦区占比较大。单倍型FLA-Hap1和FLA-Hap2分别在西南冬麦区和北部冬麦区出现频率较高, 单倍型FLA-Hap3在所有冬麦区无较高出现频率。对多环境下检测到的稳定遗传位点进行候选基因挖掘, 筛选出5个与旗叶形态相关的候选基因, 这些候选基因可作为旗叶相关性状重要基因。

关键词: 小麦, 旗叶形态性状, 全基因组关联分析, 单倍型, 候选基因

Abstract:

The flag leaf of wheat is the primary functional leaf for photosynthesis and contributes significantly to yield. Therefore, it is essential to investigate the genetic process of flag leaf morphology and identify the candidate genes for flag leaf morphology-related features. We combined 90K SNP gene chips and 300 wheat varieties (lines) for genome-wide association analysis of flag leaf length, width, and area under normal irrigation (NI), and drought stress (DS) conditions in five environments. The results showed that flag leaf length, width, and area exhibited significant differences between the two moisture treatments and displayed rich phenotypic variation with the coefficients of variation ranging from 0.07-0.23 in different environments (P<0.05). Moreover, genome-wide association study (GWAS) revealed that a total of 37 stable genetic loci were significantly associated with flag leaf length, width, and area. These loci were distributed on chromosomes 1D, 2A, 2B, 3A, 3D, 4A, 5A, 5B, 6A, 6B, 7A, and 7B, with individual SNP loci explaining 3.70%-9.05% of the genetic variation, including 22 stable genetic loci detected under normal irrigation and 15 stable genetic loci detected under drought stress. Eight stable genetic loci at the same time detected under both water treatments were discovered on chromosomes 2B, 3A, 5A, 6A, 7A, and 7B, while the five stable genetic loci related by several traits were simultaneously detected on chromosomes 2B, 3A, 6A, and 7A. By analyzing haplotypes at markers with stable inheritance and high contribution, it was found that the Kukri_c1406_275 (R2=9.05%) marker was significantly associated with flag leaf length, with three haplotypes of FLL-Hap1, FLL-Hap2, and FLL-Hap3, and the wsnp_bq170165A_Ta_1_1 (R2=7.88%) marker was also detected in three haplotypes, FLA-Hap1, FLA-Hap2, and FLA-Hap3. In combination with phenotypic analysis, the flag leaf length of 300 winter wheat varieties (lines) containing FLL-Hap1 (77.78% frequency of occurrence) or FLL-Hap2 (18.89%) haplotypes was significantly higher than that of FLL-Hap3 (3.33%) haplotypes. The flag leaf area was significantly higher in haplotypes containing FLA-Hap1 (48.19%) than in haplotypes containing FLA-Hap2 (30.80%) or FLA-Hap3 (21.01%) (P<0.05). Different haplotypes were distributed differently in different winter wheat varieties (lines). Haplotype FLL-Hap1 was more frequently distributed in foreign varieties (lines), while haplotypes FLL-Hap2 and FLL-Hap3 were more frequently distributed in the northern winter wheat region and the southwestern winter wheat region, respectively. Haplotypes FLA-Hap1 and FLA-Hap2 were more frequently distributed in the southwestern winter wheat region and the northern winter wheat region, respectively, while haplotypes FLA-Hap3 were no more frequently distributed in all winter wheat regions. Searching for stable genetic loci under both water treatments yielded and screening of five candidate genes associated with flag leaf morphology, which could be used as the important genes for flag leaf-related traits.

Key words: wheat, morphological characters of flag leaf, genome-wide association analysis, haplotype, candidate genes

表1

不同环境下群体表型变异统计分析"

性状
Trait
环境
Environment
处理
Treatment
最小值
Min.
最大值
Max.
平均数
Mean
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
旗叶长
FLL (cm)
E1 NI 11.27 23.87 17.51 a 2.37 0.14 0.12 ‒0.32
DS 10.76 24.08 16.54 b 2.27 0.14 0.40 0.17
E2 NI 9.82 24.57 16.82 a 3.02 0.18 0.46 ‒0.19
DS 9.29 26.05 15.90 b 2.79 0.18 0.49 0.41
E3 NI 14.48 24.41 19.77 a 1.53 0.08 ‒0.03 0.17
DS 13.44 23.37 18.22 b 1.55 0.09 0.20 ‒0.05
E4 NI 12.84 23.12 18.26 a 1.41 0.08 ‒0.22 0.69
DS 12.08 22.55 17.07 b 1.71 0.10 0.20 ‒0.53
BLUE NI 14.09 25.92 18.85 a 1.97 0.10 0.43 0.19
DS 12.61 22.74 16.93 b 1.75 0.10 0.51 0.17
旗叶宽
FLW (cm)
E1 NI 0.89 1.81 1.43 a 0.14 0.10 ‒0.20 0.26
DS 0.86 1.79 1.38 b 0.13 0.09 ‒0.06 0.72
E2 NI 0.87 1.69 1.32 a 0.13 0.10 0.17 0.04
DS 0.93 1.65 1.30 b 0.13 0.10 0.00 ‒0.07
E3 NI 1.28 2.08 1.73 a 0.13 0.07 ‒0.45 0.62
DS 1.23 2.00 1.66 b 0.12 0.08 ‒0.21 0.64
E4 NI 1.20 2.01 1.59 a 0.11 0.07 ‒0.05 0.45
DS 1.17 2.00 1.57 b 0.13 0.08 0.28 0.74
BLUE NI 1.19 1.84 1.51 a 0.10 0.07 ‒0.13 0.41
DS 1.19 1.83 1.48 b 0.10 0.07 0.06 0.05
旗叶面积
FLA (cm2)
E1 NI 10.58 28.30 19.38 a 3.50 0.18 0.12 ‒0.36
DS 9.53 28.68 17.62 b 3.28 0.19 0.56 0.27
E2 NI 8.99 29.59 17.01 a 3.99 0.23 0.71 0.28
DS 8.30 28.89 15.99 b 3.65 0.23 0.72 0.56
E3 NI 15.62 35.55 26.41 a 2.98 0.11 0.12 0.71
DS 12.76 31.29 23.35 b 2.92 0.13 0.04 0.44
E4 NI 14.96 30.80 22.36 a 2.59 0.12 0.13 0.26
DS 11.91 32.90 20.67 b 3.65 0.18 0.48 0.31
BLUE NI 14.75 29.77 21.29 a 2.56 0.12 0.40 0.21
DS 13.90 27.45 19.40 b 2.64 0.14 0.58 0.14

表2

不同环境下群体表型方差分析"

性状
Trait
变异来源
Source of variance
平方和
SS
均方
MS
F
F-value
P
P-value
遗传力
h2
FLL 基因型 Genotype (G) 16,768.48 56.08 9.26 1×10‒5 0.77
环境 Environment (E) 19,735.89 6578.63 1085.89 1×10‒5
基因型×环境 G×E 13,444.44 15.01 2.48 1×10‒5
FLW 基因型 Genotype (G) 71.96 0.24 10.52 1×10‒5 0.85
环境 Environment (E) 198.12 66.04 2886.16 1×10‒5
基因型×环境 G×E 35.80 0.04 1.75 1×10‒5
FLA 基因型 Genotype (G) 42,619.36 142.54 7.11 1×10‒5 0.75
环境 Environment (E) 138,568.38 46,189.46 2302.74 1×10‒5
基因型×环境 G×E 37,193.72 41.51 2.07 1×10‒5

图1

300份小麦品种(系)群体结构分析 A: 群体的ΔK值; B: 主成分分析图; C: 群体结构示意图。"

图2

不同处理下BLUE值的旗叶形态的曼哈顿图和Q-Q图 A: 正常灌溉旗叶长; B: 干旱胁迫旗叶长; C: 正常灌溉旗叶宽; D: 干旱胁迫旗叶宽; E: 正常灌溉旗叶面积; F: 干旱胁迫旗叶面积。"

表3

SNP-GWAS检测到的旗叶形态显著相关的稳定遗传的位点"

性状
Trait
标记名称
Marker name
环境
Environment
处理Treatment 染色体
Chr.
位置
Position (Mb)
P
P-value
贡献率
R2 (%)
先前已报道位点
Previously reported
QTL
FLL BS00067711_51 E1/E2/BLUE NI 2A 36.93 2.61E‒04-5.69E‒04 4.09-4.57
Tdurum_contig82812_213 E3/E4 NI 2A 74.11-78.33 2.17E‒04-9.46E‒04 3.81-4.72 Qfll2A-1[31]
Excalibur_c11863_289 E1/E2/BLUE DS 2B 157.69 2.45E‒04-8.93E‒04 6.87-8.40
IACX6324 E1/BLUE DS 2B 747.18 1.37E‒04-4.85E‒04 4.26-4.96 qFll-2B.1[11]
wsnp_Ex_c18747_27625264 E1/E2//E4/BLUE NI 3A 645.09-652.03 4.43E‒04-8.60E‒04 4.57-6.84
wsnp_Ex_c18747_27625264 E2/E3/BLUE DS 3A 645.09-646.85 4.02E‒04-8.05E‒04 3.94-4.28
RAC875_c10194_673 E1/E2/BLUE NI 3A 683.07-686.13 1.12E‒04-7.50E‒04 3.90-5.04 Qfla-3A[26]
wsnp_Ku_c42416_50159250 E3/E2/BLUE NI 5A 610.22-617.98 2.51E‒04-7.17E‒04 5.15-5.72 EPQFll.nau-5A[12]
BS00022378_51 E1/E2/BLUE NI 5A 663.91-664.48 4.76E‒06-9.50E‒04 4.71-7.17
BS00022378_51 E1/E2/ BLUE DS 5A 663.91-664.48 4.76E‒06-9.69E‒04 3.74-7.17
BobWhite_c8266_227 E2/BLUE NI 5A 698.51 8.40E‒06-5.90E‒04 4.12-6.75
BobWhite_c8266_227 E2 /BLUE DS 5A 698.51 5.31E‒05-2.61E‒04 4.66-5.75
RFL_Contig2206_1694 E4/ BLUE DS 6A 600.45-608.12 2.25E‒05-9.64E‒04 3.87-6.45
tplb0059j12_800 E1/E2 /BLUE DS 6B 186.70-188.19 1.94E‒04-7.95E‒04 3.94-4.71
Kukri_c1406_275 E1/E2/BLUE NI 7A 538.69-546.04 6.50E‒07-7.75E‒04 3.95-9.05
Kukri_c1406_275 E3/BLUE DS 7A 546.04 1.63E‒04-4.01E‒04 4.40-6.13
GENE-4898_208 E1/E2/BLUE NI 7A 567.58-572.87 1.67E‒05-7.72E‒04 3.78-6.42
CAP7_rep_c5949_55 E1/BLUE NI 7A 709.12-709.89 3.27E‒04-4.89E‒04 4.27-4.52
BS00067530_51 E3/E4/ NI 7B 648.92-648.93 2.70E‒05-9.32E‒04 5.00-7.72
BS00067530_51 E1/BLUE DS 7B 648.11-648.93 2.40E‒04-4.70E‒04 4.10-5.60
BobWhite_c14966_231 E1/BLUE NI 7B 693.00 1.23E‒04-4.36E‒04 4.36-5.20 Qfll7B-1[31]
FLW CAP12_c46_333 E3/BLUE NI 1D 15.32 8.92E‒06-7.96E‒04 4.14-7.45
Ra_c19501_1510 E2/BLUE NI 2B 11.19-14.83 7.15E‒04 3.96-5.02
Kukri_c783_1833 E1/BLUE DS 3D 418.39 4.35E‒05-3.65E‒04 4.38-5.79
BS00023151_51 E1/E2/BLUE NI 4A 606.59 2.74E‒04-7.94E‒04 3.97-4.82
Tdurum_contig29319_256 E3/BLUE NI 5B 558.41-558.42 1.99E‒05-6.10E‒04 4.11-6.56
BS00023192_51 E1/E2/BLUE NI 6A 13.81-18.71 3.90E‒04-9.76E‒04 3.79-5.82
RFL_Contig2206_1694 E2//BLUE NI 6A 600.45-602.71 3.36E‒04-9.64E‒04 3.87-4.45
RFL_Contig2206_1694 E2/BLUE DS 6A 600.45 2.25E‒05-1.31E‒04 5.17-6.45
tplb0024a09_2028 E1/BLUE NI 7A 42.50-46.97 7.89E‒04-8.19E‒04 3.90-4.13
Tdurum_contig66023_89 E3/E4 DS 7A 719.58-724.12 8.43E‒06-7.80E‒04 4.23-7.30 Qfla7A-1[31]
FLA Ra_c19501_1510 E1/BLUE DS 2B 7.91-11.19 5.92E‒05-7.84E‒04 3.94-6.77
wsnp_Ex_c18747_27625264 E1/E2/BLUE NI 3A 645.09-646.85 2.26E‒05-8.13E‒04 3.85-6.42
RAC875_c10194_673 E1/E2/BLUE NI 3A 683.07 4.93E‒04-9.55E‒04 3.70-4.13 Qfla-3A[26]
wsnp_bq170165A_Ta_1_1 E1/E2/BLUE NI 7A 553.39-553.99 9.01E‒05-8.84E‒04 3.81-7.88
wsnp_bq170165A_Ta_1_1 E4/BLUE DS 7A 553.39-553.99 2.11E‒04-2.96E‒04 4.50-4.80
Tdurum_contig66023_89 E3/E4 DS 7A 721.92 3.32E‒06-1.22E‒04 5.29-7.62 Qfla7A-1[31]

图3

与旗叶性状相关单倍型分析 A: 7A染色体上Kukri_c1406_275和wsnp_bq170165A_Ta_1_1标记关联的连锁区域; B: 不同麦区中Kukri_c1406_275标记的3个单倍型分布频率; C: 不同麦区中wsnp_bq170165A_Ta_1_1标记的3个单倍型分布频率; NWWR: 北部冬麦区; FV: 国外品种(系); YHFWWR: 黄淮冬麦区; SWWR: 西南冬麦区; MLYWWR: 长江中下游冬麦区。"

表4

表型结合单倍型结果的统计分析"

性状
Trait
标记名称
Marker name
单倍型
Haplotype
等位基因
Allele
频率
Frequency (%)
平均值 Mean
NI (cm) DS (cm)
FLL Kukri_c1406_275 FLL-Hap1 AT 77.78 18.89 a 16.93 a
FLL-Hap2 AC 18.89 18.94 a 17.16 a
FLL-Hap3 GC 3.33 17.43 b 15.29 b
FLA wsnp_bq170165A_Ta_1_1 FLA-Hap1 GA 48.19 22.21 a 20.35 a
FLA-Hap3 AA 21.01 21.27 b 19.45 b
FLA-Hap2 GG 30.80 19.80 c 17.73 c

表5

筛选获得候选基因信息"

染色体
Chr.
位点
Marker name
处理Treatment 性状
Trait
物理位置
Position
(Mb)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
2B IACX6324 DS FLL 744.68 TraesCS2B01G548800 2-酮戊二酸(2OG)和Fe(II)依赖性加氧酶超家族蛋白
2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein
3A RAC875_c10194_673 NI FLL, FLA 686.74 TraesCS3A01G446100 F-box家族蛋白
F-box family protein
5B Tdurum_contig29319_256 NI FLW 557.70 TraesCS5B01G379500 GDSL酯酶/脂肪酶
GDSL esterase/lipase
6A RFL_Contig2206_1694 NI/DS FLL, FLW 603.18 TraesCS6A01G385500 Myb转录因子家族蛋白
Myb family transcription factor family
protein
7A wsnp_bq170165A_Ta_1_1 NI/DS FLA 554.49 TraesCS7A01G379000 F-box家族蛋白
F-box family protein
7B BS00067530_51 NI/DS FLL 648.13 TraesCS7B01G382400 F-box家族蛋白
F-box family protein
[1] Ray D K, Mueller N D, West P C, Foley J A, Hart J P. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428.
doi: 10.1371/journal.pone.0066428
[2] 赵广才, 常旭虹, 王德梅, 杨玉双, 冯金凤. 中国小麦生产发展潜力研究报告. 作物杂志, 2012, (3): 1-5.
Zhao G C, Chang X H, Wang D M, Yang Y S, Feng J F. Research report on development of China’s wheat production potential. Crops, 2012, (3): 1-5 (in Chinese with English abstract).
[3] Liu Y X, Tao Y, Wang Z Q, Guo Q L, Wu F K, Yang X L, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L. Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Mol Breed, 2018, 38: 11.
doi: 10.1007/s11032-017-0766-x
[4] Sharma S N, Sain R S, Sharma R K. The genetic control of flag leaf length in normal and late sown durum wheat. J Agric Sci, 2003, 141: 323-331.
doi: 10.1017/S0021859603003642
[5] 王义芹, 杨兴洪, 李滨, 童依平, 李振声. 小麦叶面积及光合速率与产量关系的研究. 华北农学报, 2008, 23(增刊2): 10-15.
Wang Y Q, Yang X H, Li B, Tong Y P, Li Z S. Study on the relationship between leaf area, photosynthetic rate and yield of wheat. Acta Agric Boreali-Sin, 2008, 23(S2): 10-15 (in Chinese with English abstract).
[6] 王敏, 张从宇. 小麦旗叶性状与产量因素的相关与回归分析. 种子, 2004, (3): 17-18.
Wang M, Zhang C Y. Correlation and regression analysis of flag leaf traits and yield components in wheat. Seeds, 2004, (3): 17-18 (in Chinese with English abstract).
[7] 景蕊莲. 作物抗旱节水研究进展. 中国农业科技导报, 2007, (1): 1-5.
Jing R L. Advances of research on drought resistance and water use efficiency in crop plants. J Agric Sci Technol, 2007, (1): 1-5 (in Chinese with English abstract).
[8] Biswal A K, Kohli A. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breed, 2013, 31: 749-766.
doi: 10.1007/s11032-013-9847-7
[9] Liu K Y, Xu H, Liu G, Guan P F, Zhou X Y, Peng H R, Yao Y Y, Ni Z F, Sun Q X, Du J K. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor Appl Genet, 2018, 131: 839-849.
doi: 10.1007/s00122-017-3040-z
[10] 吕学莲, 白海波, 董建力, 惠建, 孙亚宁, 蔡正云, 李树华. 春小麦旗叶大小相关性状的QTL定位分析. 麦类作物学报, 2016, 36: 1587-1593.
Lyu X L, Bai H B, Dong J L, Hui J, Sun Y N, Cai Z Y, Li S H. QTL mapping for size traits of flag leaf in spring wheat. J Triticeae Crops, 2016, 36: 1587-1593 (in Chinese with English abstract).
[11] Fan X L, Cui F, Zhao C H, Zhang W, Yang L J, Zhao X Q, Han J, Su Q N, Ji J, Zhao Z W, Tong Y P, Li J M. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breed, 2015, 35: 1-16.
doi: 10.1007/s11032-015-0202-z
[12] Jia H, Wan H, Yang S, Zhang Z Z, Kong Z X, Xue S L, Zhang L X, Ma Z Q. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet, 2013, 126: 2123-2139.
doi: 10.1007/s00122-013-2123-8
[13] Xue S L, Xu F, Li G Q, Zhou Y, Lin M S, Gao Z X, Su X H, Xu X W, Jiang G, Zhang S, Jia H Y, Kong Z X, Zhang L X, Ma Z Q. Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2013, 126: 1941-1949.
doi: 10.1007/s00122-013-2108-7
[14] 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关. 作物学报, 2023, 49: 906-916.
doi: 10.3724/SP.J.1006.2023.21029
Zhu Z, Li L, Li C N, Mao X G, Hao C Y, Zhu T, Wang J Y, Chang J Z, Jing R L. Transcription factor TaMYB5-3B is associated with plant height and 1000-grain weight in wheat. Acta Agron Sin, 2023, 49: 906-916.
[15] 刘朦朦, 张萌娜, 张倩倩, 刘锡建, 郭宇航. 小麦旗叶宽主效QTL qFlw-5B遗传效应解析. 麦类作物学报, 2019, 39: 1399-1405.
Liu M M, Zhang M N, Zhang Q Q, Liu X J, Guo Y H. Genetic analysis of a major stable QTL qFlw-5B for wheat flag leaf width. J Triticeae Crops, 2019, 39: 1399-1405 (in Chinese with English abstract).
[16] 李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣. 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 2018, 38: 455-459.
Li H R, Li H L, Wang H G, Li D X, Li R Q, Li Y M. Further study on the method of leaf area calculation in winter wheat. J Triticeae Crops, 2018, 38: 455-459 (in Chinese with English abstract).
[17] Cheng Y K, Li J, Yao F J, Long L, Wang Y Q, Wu Y, Li J, Ye X L, Wang J R, Jiang Q T, Kang H Y, Li W, Qi P F, Liu Y X, Deng M, Ma J, Jiang Y F, Chen X M, Zheng Y L, Wei Y M, Chen G Y. Dissection of loci conferring resistance to stripe rust in Chinese wheat landraces from the middle and lower reaches of the Yangtze River via genome-wide association study. Plant Sci, 2019, 287: 110204.
doi: 10.1016/j.plantsci.2019.110204
[18] Li D D, Xu Z X, Gu R L, Wang P X, Lyle D, Xu J L, Zhang H W, Wang G Y. Enhancing genomic selection by fitting large-effect SNPs as fixed effects and a genotype-by-environment effect using a maize BC1F3:4 population. PLoS One, 2019, 14: e0223898.
doi: 10.1371/journal.pone.0223898
[19] Wang S X, Zhu Y L, Zhang D X, Shao H, Liu P, Hu J B, Zhang H, Zhang H P, Chang C, Lu J, Xia X C, Sun G L, Ma C X. Genome- wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One, 2017, 12: e0188662.
doi: 10.1371/journal.pone.0188662
[20] Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genome, 2008, 1: 5-20.
[21] Yu J M, Pressoir G, Briggs W H, Bi L V, Yamasaki M, Doebley J F, Mcmullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716
[22] 李天清, 王金堂, 马真胜, 雷伟, 王林, 李萌. 骨质疏松性骨折与OPG-RANK-RANKL系统基因多态性的关联分析. 中国骨质疏松杂志, 2014, 20: 247-255.
Li T Q, Wang J T, Ma Z S, Lei W, Wang L, Li M. Correlation analysis of the relationship between the osteoporotic fracture and OPG-RANK-RANKL gene polymorphisms. Chin J Osteop, 2014, 20: 247-255 (in Chinese with English abstract).
[23] Gabriel S B, Schaffner S F, Liu-cordero S N, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander E S, Daly M J, Altshuter D, Nguyen H, Moor J M, Roy J, Blumenstiel B, Higgins J, Defelice M, Lochner A, Faggart M. The structure of haplotype blocks in the human genome. Science, 2002, 296: 2225-2229.
doi: 10.1126/science.1069424 pmid: 12029063
[24] 闫雪, 史雨刚, 梁增浩, 杨斌, 李晓宇, 王曙光, 孙黛珍. 小麦旗叶形态相关性状的QTL定位. 核农学报, 2015, 29: 1253-1259.
doi: 10.11869/j.issn.100-8551.2015.07.1253
Yan X, Shi Y G, Liang Z H, Yang B, Li X Y, Wang S G, Sun D Z. QTL mapping for morphological traits of flag leaf in wheat. J Nucl Agric Sci, 2015, 29: 1253-1259 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2015.07.1253
[25] 宋霄君, 张敏, 李秉昌, 赵城, 刘希伟, 贾晓沛, 王琨, 蔡瑞国. 干旱胁迫对小麦营养器官物质转运和籽粒灌浆特性的影响. 中国农学通报, 2016, 32(15): 25-31.
doi: 10.11924/j.issn.1000-6850.casb16010002
Song X J, Zhang M, Li B C, Zhao C, Liu X W, Jia X P, Wang K, Cai R G. Effects of drought stress on material transport and grain-filling characteristics of wheat vegetative organs. Chin Agric Sci Bull, 2016, 32(15): 25-31 (in Chinese with English abstract).
[26] Chen S, Liu F, Wu W X, Jiang Y, Zhan K H. A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat (Triticum aestivum L.). Theor Appl Genet, 2021, 134: 3895-3909.
doi: 10.1007/s00122-021-03935-7
[27] Khanna C R, Singh K, Shukla S, Kadam S, Singh N K. QTLs for cell membrane stability and flag leaf area under drought stress in a wheat RIL population. J Plant Biochem Biotechnol, 2020, 29: 276-286.
doi: 10.1007/s13562-019-00534-y
[28] 曹英杰, 杨剑飞, 王宇. 全基因组关联分析在作物育种研究中的应用. 核农学报, 2019, 33: 1508-1518.
doi: 10.11869/j.issn.100-8551.2019.08.1508
Cao Y J, Yang J F, Wang Y. The application of GWAS in crop breeding. J Nucl Agric Sci, 2019, 33: 1508-1518 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2019.08.1508
[29] Wu Q H, Chen Y X, Fu L, Zhou S H, Chen J J, Zhao X J, Zhao D, Ou-Yang S H, Wang Z Z, Li D, Wang G X, Zhang D Y, Yuan C G, Wang L X, You M S, Han J, Liu Z Y. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica, 2016, 208: 337-351.
doi: 10.1007/s10681-015-1603-0
[30] Yang D L, Liu Y, Cheng H B, Chang L, Chen J J, Chai S X, Li M F. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.)under diverse water regimes. BMC Genet, 2016, 17: 1-15.
[31] 连俊方, 张德强, 武炳瑾, 宋晓朋, 马文洁, 周丽敏, 冯毅, 孙道杰. 利用90K基因芯片进行小麦旗叶相关性状的QTL定位. 麦类作物学报, 2016, 36: 689-698.
Lian J F, Zhang D Q, Wu B J, Song X P, Ma W J, Zhou L M, Feng Y, Sun D J. QTL mapping of flag leaf traits using an integrated high-density 90K genotyping chip. J Triticeae Crops, 2016, 36: 689-698 (in Chinese with English abstract).
[32] Yan X F, Zhao L, Ren Y, Zhang N, Dong Z D, Chen F. Identification of genetic loci and a candidate gene related to flag leaf traits in common wheat by genome-wide association study and linkage mapping. Mol Breed, 2020, 6: 40-58.
[33] 严勇亮, 张恒, 张金波, 时晓磊, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦主要籽粒性状的全基因组关联分析. 麦类作物学报, 2022, 42: 1182-1191.
Yan Y L, Zhang H, Zhang J B, Shi X L, Geng H W, Xiao J, Lu Z F, Ni Z F, Cong H. Genome-wide association study of grain traits in spring wheat. J Triticeae Crops, 2022, 42: 1182-1191 (in Chinese with English abstract).
[34] 陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22: 1698-1707.
doi: 10.13430/j.cnki.jpgr. 20210419003
Chen L L, Liu T X, Gu Y Z, Song J, Wang J, Qiu L J. Haplotype analysis of petiole angle related gene GmILPA1 in soybean. J Plant Genet Resour, 2021, 22: 1698-1707 (in Chinese with English abstract).
[35] 赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30: 886-895.
Zhao G C. Study on Chinese wheat planting regionalization (I). J Triticeae Crops, 2010, 30: 886-895 (in Chinese with English abstract).
[36] 茹振钢, 冯素伟, 李淦. 黄淮麦区小麦品种的高产潜力与实现途径. 中国农业科学, 2015, 48: 3388-3393.
doi: 10.3864/j.issn.0578-1752.2015.17.006
Ru Z G, Feng S W, Li G. High-yield potential and effective ways of wheat in Yellow & Huai Rivers valley facultative winter wheat region. Sci Agric Sin, 2015, 48: 3388-3393 (in Chinese with English abstract).
[37] Zhao Z X, Zhang G Q, Zhou S M, Ren Y Q, Wang W. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci, 2017, 259: 71-85.
doi: 10.1016/j.plantsci.2017.03.010
[38] Baute J, Polyn S, Block J D, Blomme J, Lijsebettens M V, Baute J. F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol, 2017, 58: 962-975.
doi: 10.1093/pcp/pcx035 pmid: 28340173
[39] Byeon Y, Back K. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). J Pineal Res, 2015, 58: 343-351.
doi: 10.1111/jpi.12220 pmid: 25728912
[40] Farrow S C, Facchini P J. Functional diversity of 2-oxoglutarate/ Fe(II)-dependent dioxygenases in plant metabolism. Front Plant Sci, 2014, 5: 524-539.
doi: 10.3389/fpls.2014.00524 pmid: 25346740
[41] Arnao M B, Hernández-Ruiz J. Functions of melatonin in plants: a review. J Pineal Res, 2015, 59: 133-150.
doi: 10.1111/jpi.12253 pmid: 26094813
[42] MacMillan J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul, 2001, 20: 387-442.
doi: 10.1007/s003440010038 pmid: 11986764
[43] Park J J, Jin P, Yoon J, Yang J, Jeong H J, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. Mutation in wilted dwarf and lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91-103.
doi: 10.1007/s11103-010-9656-x
[44] 徐文, 申浩, 郭军, 余晓丛, 李祥, 杨彦会, 马晓, 赵世杰, 宋健民. 旗叶蜡质含量不同小麦近等基因系的抗旱性. 作物学报, 2016, 42: 1700-1707.
Xu W, Shen H, Guo J, Yu X C, Li X, Yang Y H, Ma X, Zhao S J, Song J M. Drought resistance of wheat NILs with different cuticular wax contents in flag leaf. Acta Agron Sin, 2016, 42: 1700-1707 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01700
[45] 凌华. 油菜GDSL脂肪酶基因BnLIP1的克隆及其原核表达. 中国农学通报, 2007, (12): 102-106.
Ling H. Cloning of a GDSL lipase gene from Brassica napus and preliminary study of its recombinant expression in Escherichia coli. Chin Agric Sci Bull, 2007, (12): 102-106 (in Chinese with English abstract).
[46] Zhao Y, Tian X J, Wang F, Zhang L Y, Xin M M, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, Peng H R. Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biol, 2017, 17: 208-221.
doi: 10.1186/s12870-017-1158-4 pmid: 29157199
[1] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[4] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[5] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[6] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[7] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[8] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[9] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[10] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[11] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[12] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[13] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[14] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[15] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[8] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[9] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[10] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .