作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2886-2901.doi: 10.3724/SP.J.1006.2023.21085
王睿1,2, 任毅1,2, 程宇坤1,2, 王伟1,2,3, 张志辉1,2, 耿洪伟1,2,*
WANG Rui1,2, REN Yi1,2, CHENG Yu-Kun1,2, WANG Wei1,2,3, ZHANG Zhi-Hui1,2, GENG Hong-Wei1,2,*
摘要:
小麦旗叶是进行光合作用的主要功能叶, 对产量有着重要贡献。为了解小麦旗叶形态的遗传机制, 挖掘旗叶形态相关性状的候选基因, 本研究采用300份小麦品种(系), 结合90K SNP基因芯片对5种环境下正常灌溉(NI)和干旱胁迫(DS)条件下的旗叶长、宽、面积进行全基因组关联分析。结果表明, 旗叶长、宽、面积在2种水分处理下表现出显著差异(P<0.05), 在不同的环境下表现出丰富的表型变异, 变异系数为0.07~0.23。全基因组关联分析(genome- wide association study, GWAS)结果显示, 共检测到37个与旗叶长、宽、面积显著相关的稳定遗传位点, 分布于1D、2A、2B、3A、3D、4A、5A、5B、6A、6B、7A、7B染色体上, 单个SNP位点可解释遗传变异为3.70%~9.05%, 其中正常灌溉下检测到22个稳定遗传位点, 干旱胁迫下检测到15个稳定遗传位点。2种处理下共同检测到的稳定遗传位点有8个, 位于2B、3A、5A、6A、7A、7B染色体上。在2B、3A、6A、7A染色体上检测到5个同时与多个性状相关联的稳定遗传位点。对稳定遗传且贡献率较大的标记处进行单倍型分析, 发现与旗叶长显著相关的Kukri_ c1406_275 (R2=9.05%)标记存在FLL-Hap1、FLL-Hap2和FLL-Hap3三种单倍型, 与旗叶面积显著相关的wsnp_ bq170165A_Ta_1_1 (R2=7.88%)标记同样存在FLA-Hap1、FLA-Hap2和FLA-Hap3三种单倍型。结合表型分析, 在300份冬小麦品种(系)中含有FLL-Hap1 (出现频率为77.78%)或FLL-Hap2 (18.89%)单倍型品种(系)的旗叶长显著高于含有FLL-Hap3 (3.33%)单倍型品种(系)的旗叶长, 含有FLA-Hap1 (48.19%)单倍型品种(系)的旗叶面积显著高于含有FLA-Hap2 (30.80%)或FLA-Hap3 (21.01%)单倍型品种(系)的旗叶面积(P<0.05)。不同单倍型在不同冬小麦品种(系)中分布不同, 单倍型FLL-Hap1在国外品种(系)占比较大, 单倍型FLL-Hap2、FLL-Hap3分别在北部冬麦区和西南冬麦区占比较大。单倍型FLA-Hap1和FLA-Hap2分别在西南冬麦区和北部冬麦区出现频率较高, 单倍型FLA-Hap3在所有冬麦区无较高出现频率。对多环境下检测到的稳定遗传位点进行候选基因挖掘, 筛选出5个与旗叶形态相关的候选基因, 这些候选基因可作为旗叶相关性状重要基因。
[1] |
Ray D K, Mueller N D, West P C, Foley J A, Hart J P. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428.
doi: 10.1371/journal.pone.0066428 |
[2] | 赵广才, 常旭虹, 王德梅, 杨玉双, 冯金凤. 中国小麦生产发展潜力研究报告. 作物杂志, 2012, (3): 1-5. |
Zhao G C, Chang X H, Wang D M, Yang Y S, Feng J F. Research report on development of China’s wheat production potential. Crops, 2012, (3): 1-5 (in Chinese with English abstract). | |
[3] |
Liu Y X, Tao Y, Wang Z Q, Guo Q L, Wu F K, Yang X L, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L. Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Mol Breed, 2018, 38: 11.
doi: 10.1007/s11032-017-0766-x |
[4] |
Sharma S N, Sain R S, Sharma R K. The genetic control of flag leaf length in normal and late sown durum wheat. J Agric Sci, 2003, 141: 323-331.
doi: 10.1017/S0021859603003642 |
[5] | 王义芹, 杨兴洪, 李滨, 童依平, 李振声. 小麦叶面积及光合速率与产量关系的研究. 华北农学报, 2008, 23(增刊2): 10-15. |
Wang Y Q, Yang X H, Li B, Tong Y P, Li Z S. Study on the relationship between leaf area, photosynthetic rate and yield of wheat. Acta Agric Boreali-Sin, 2008, 23(S2): 10-15 (in Chinese with English abstract). | |
[6] | 王敏, 张从宇. 小麦旗叶性状与产量因素的相关与回归分析. 种子, 2004, (3): 17-18. |
Wang M, Zhang C Y. Correlation and regression analysis of flag leaf traits and yield components in wheat. Seeds, 2004, (3): 17-18 (in Chinese with English abstract). | |
[7] | 景蕊莲. 作物抗旱节水研究进展. 中国农业科技导报, 2007, (1): 1-5. |
Jing R L. Advances of research on drought resistance and water use efficiency in crop plants. J Agric Sci Technol, 2007, (1): 1-5 (in Chinese with English abstract). | |
[8] |
Biswal A K, Kohli A. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breed, 2013, 31: 749-766.
doi: 10.1007/s11032-013-9847-7 |
[9] |
Liu K Y, Xu H, Liu G, Guan P F, Zhou X Y, Peng H R, Yao Y Y, Ni Z F, Sun Q X, Du J K. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor Appl Genet, 2018, 131: 839-849.
doi: 10.1007/s00122-017-3040-z |
[10] | 吕学莲, 白海波, 董建力, 惠建, 孙亚宁, 蔡正云, 李树华. 春小麦旗叶大小相关性状的QTL定位分析. 麦类作物学报, 2016, 36: 1587-1593. |
Lyu X L, Bai H B, Dong J L, Hui J, Sun Y N, Cai Z Y, Li S H. QTL mapping for size traits of flag leaf in spring wheat. J Triticeae Crops, 2016, 36: 1587-1593 (in Chinese with English abstract). | |
[11] |
Fan X L, Cui F, Zhao C H, Zhang W, Yang L J, Zhao X Q, Han J, Su Q N, Ji J, Zhao Z W, Tong Y P, Li J M. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breed, 2015, 35: 1-16.
doi: 10.1007/s11032-015-0202-z |
[12] |
Jia H, Wan H, Yang S, Zhang Z Z, Kong Z X, Xue S L, Zhang L X, Ma Z Q. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet, 2013, 126: 2123-2139.
doi: 10.1007/s00122-013-2123-8 |
[13] |
Xue S L, Xu F, Li G Q, Zhou Y, Lin M S, Gao Z X, Su X H, Xu X W, Jiang G, Zhang S, Jia H Y, Kong Z X, Zhang L X, Ma Z Q. Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2013, 126: 1941-1949.
doi: 10.1007/s00122-013-2108-7 |
[14] |
朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关. 作物学报, 2023, 49: 906-916.
doi: 10.3724/SP.J.1006.2023.21029 |
Zhu Z, Li L, Li C N, Mao X G, Hao C Y, Zhu T, Wang J Y, Chang J Z, Jing R L. Transcription factor TaMYB5-3B is associated with plant height and 1000-grain weight in wheat. Acta Agron Sin, 2023, 49: 906-916. | |
[15] | 刘朦朦, 张萌娜, 张倩倩, 刘锡建, 郭宇航. 小麦旗叶宽主效QTL qFlw-5B遗传效应解析. 麦类作物学报, 2019, 39: 1399-1405. |
Liu M M, Zhang M N, Zhang Q Q, Liu X J, Guo Y H. Genetic analysis of a major stable QTL qFlw-5B for wheat flag leaf width. J Triticeae Crops, 2019, 39: 1399-1405 (in Chinese with English abstract). | |
[16] | 李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣. 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 2018, 38: 455-459. |
Li H R, Li H L, Wang H G, Li D X, Li R Q, Li Y M. Further study on the method of leaf area calculation in winter wheat. J Triticeae Crops, 2018, 38: 455-459 (in Chinese with English abstract). | |
[17] |
Cheng Y K, Li J, Yao F J, Long L, Wang Y Q, Wu Y, Li J, Ye X L, Wang J R, Jiang Q T, Kang H Y, Li W, Qi P F, Liu Y X, Deng M, Ma J, Jiang Y F, Chen X M, Zheng Y L, Wei Y M, Chen G Y. Dissection of loci conferring resistance to stripe rust in Chinese wheat landraces from the middle and lower reaches of the Yangtze River via genome-wide association study. Plant Sci, 2019, 287: 110204.
doi: 10.1016/j.plantsci.2019.110204 |
[18] |
Li D D, Xu Z X, Gu R L, Wang P X, Lyle D, Xu J L, Zhang H W, Wang G Y. Enhancing genomic selection by fitting large-effect SNPs as fixed effects and a genotype-by-environment effect using a maize BC1F3:4 population. PLoS One, 2019, 14: e0223898.
doi: 10.1371/journal.pone.0223898 |
[19] |
Wang S X, Zhu Y L, Zhang D X, Shao H, Liu P, Hu J B, Zhang H, Zhang H P, Chang C, Lu J, Xia X C, Sun G L, Ma C X. Genome- wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One, 2017, 12: e0188662.
doi: 10.1371/journal.pone.0188662 |
[20] | Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genome, 2008, 1: 5-20. |
[21] |
Yu J M, Pressoir G, Briggs W H, Bi L V, Yamasaki M, Doebley J F, Mcmullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716 |
[22] | 李天清, 王金堂, 马真胜, 雷伟, 王林, 李萌. 骨质疏松性骨折与OPG-RANK-RANKL系统基因多态性的关联分析. 中国骨质疏松杂志, 2014, 20: 247-255. |
Li T Q, Wang J T, Ma Z S, Lei W, Wang L, Li M. Correlation analysis of the relationship between the osteoporotic fracture and OPG-RANK-RANKL gene polymorphisms. Chin J Osteop, 2014, 20: 247-255 (in Chinese with English abstract). | |
[23] |
Gabriel S B, Schaffner S F, Liu-cordero S N, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander E S, Daly M J, Altshuter D, Nguyen H, Moor J M, Roy J, Blumenstiel B, Higgins J, Defelice M, Lochner A, Faggart M. The structure of haplotype blocks in the human genome. Science, 2002, 296: 2225-2229.
doi: 10.1126/science.1069424 pmid: 12029063 |
[24] |
闫雪, 史雨刚, 梁增浩, 杨斌, 李晓宇, 王曙光, 孙黛珍. 小麦旗叶形态相关性状的QTL定位. 核农学报, 2015, 29: 1253-1259.
doi: 10.11869/j.issn.100-8551.2015.07.1253 |
Yan X, Shi Y G, Liang Z H, Yang B, Li X Y, Wang S G, Sun D Z. QTL mapping for morphological traits of flag leaf in wheat. J Nucl Agric Sci, 2015, 29: 1253-1259 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2015.07.1253 |
|
[25] |
宋霄君, 张敏, 李秉昌, 赵城, 刘希伟, 贾晓沛, 王琨, 蔡瑞国. 干旱胁迫对小麦营养器官物质转运和籽粒灌浆特性的影响. 中国农学通报, 2016, 32(15): 25-31.
doi: 10.11924/j.issn.1000-6850.casb16010002 |
Song X J, Zhang M, Li B C, Zhao C, Liu X W, Jia X P, Wang K, Cai R G. Effects of drought stress on material transport and grain-filling characteristics of wheat vegetative organs. Chin Agric Sci Bull, 2016, 32(15): 25-31 (in Chinese with English abstract). | |
[26] |
Chen S, Liu F, Wu W X, Jiang Y, Zhan K H. A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat (Triticum aestivum L.). Theor Appl Genet, 2021, 134: 3895-3909.
doi: 10.1007/s00122-021-03935-7 |
[27] |
Khanna C R, Singh K, Shukla S, Kadam S, Singh N K. QTLs for cell membrane stability and flag leaf area under drought stress in a wheat RIL population. J Plant Biochem Biotechnol, 2020, 29: 276-286.
doi: 10.1007/s13562-019-00534-y |
[28] |
曹英杰, 杨剑飞, 王宇. 全基因组关联分析在作物育种研究中的应用. 核农学报, 2019, 33: 1508-1518.
doi: 10.11869/j.issn.100-8551.2019.08.1508 |
Cao Y J, Yang J F, Wang Y. The application of GWAS in crop breeding. J Nucl Agric Sci, 2019, 33: 1508-1518 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2019.08.1508 |
|
[29] |
Wu Q H, Chen Y X, Fu L, Zhou S H, Chen J J, Zhao X J, Zhao D, Ou-Yang S H, Wang Z Z, Li D, Wang G X, Zhang D Y, Yuan C G, Wang L X, You M S, Han J, Liu Z Y. QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica, 2016, 208: 337-351.
doi: 10.1007/s10681-015-1603-0 |
[30] | Yang D L, Liu Y, Cheng H B, Chang L, Chen J J, Chai S X, Li M F. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.)under diverse water regimes. BMC Genet, 2016, 17: 1-15. |
[31] | 连俊方, 张德强, 武炳瑾, 宋晓朋, 马文洁, 周丽敏, 冯毅, 孙道杰. 利用90K基因芯片进行小麦旗叶相关性状的QTL定位. 麦类作物学报, 2016, 36: 689-698. |
Lian J F, Zhang D Q, Wu B J, Song X P, Ma W J, Zhou L M, Feng Y, Sun D J. QTL mapping of flag leaf traits using an integrated high-density 90K genotyping chip. J Triticeae Crops, 2016, 36: 689-698 (in Chinese with English abstract). | |
[32] | Yan X F, Zhao L, Ren Y, Zhang N, Dong Z D, Chen F. Identification of genetic loci and a candidate gene related to flag leaf traits in common wheat by genome-wide association study and linkage mapping. Mol Breed, 2020, 6: 40-58. |
[33] | 严勇亮, 张恒, 张金波, 时晓磊, 耿洪伟, 肖菁, 路子峰, 倪中福, 丛花. 春小麦主要籽粒性状的全基因组关联分析. 麦类作物学报, 2022, 42: 1182-1191. |
Yan Y L, Zhang H, Zhang J B, Shi X L, Geng H W, Xiao J, Lu Z F, Ni Z F, Cong H. Genome-wide association study of grain traits in spring wheat. J Triticeae Crops, 2022, 42: 1182-1191 (in Chinese with English abstract). | |
[34] |
陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22: 1698-1707.
doi: 10.13430/j.cnki.jpgr. 20210419003 |
Chen L L, Liu T X, Gu Y Z, Song J, Wang J, Qiu L J. Haplotype analysis of petiole angle related gene GmILPA1 in soybean. J Plant Genet Resour, 2021, 22: 1698-1707 (in Chinese with English abstract). | |
[35] | 赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30: 886-895. |
Zhao G C. Study on Chinese wheat planting regionalization (I). J Triticeae Crops, 2010, 30: 886-895 (in Chinese with English abstract). | |
[36] |
茹振钢, 冯素伟, 李淦. 黄淮麦区小麦品种的高产潜力与实现途径. 中国农业科学, 2015, 48: 3388-3393.
doi: 10.3864/j.issn.0578-1752.2015.17.006 |
Ru Z G, Feng S W, Li G. High-yield potential and effective ways of wheat in Yellow & Huai Rivers valley facultative winter wheat region. Sci Agric Sin, 2015, 48: 3388-3393 (in Chinese with English abstract). | |
[37] |
Zhao Z X, Zhang G Q, Zhou S M, Ren Y Q, Wang W. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci, 2017, 259: 71-85.
doi: 10.1016/j.plantsci.2017.03.010 |
[38] |
Baute J, Polyn S, Block J D, Blomme J, Lijsebettens M V, Baute J. F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol, 2017, 58: 962-975.
doi: 10.1093/pcp/pcx035 pmid: 28340173 |
[39] |
Byeon Y, Back K. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). J Pineal Res, 2015, 58: 343-351.
doi: 10.1111/jpi.12220 pmid: 25728912 |
[40] |
Farrow S C, Facchini P J. Functional diversity of 2-oxoglutarate/ Fe(II)-dependent dioxygenases in plant metabolism. Front Plant Sci, 2014, 5: 524-539.
doi: 10.3389/fpls.2014.00524 pmid: 25346740 |
[41] |
Arnao M B, Hernández-Ruiz J. Functions of melatonin in plants: a review. J Pineal Res, 2015, 59: 133-150.
doi: 10.1111/jpi.12253 pmid: 26094813 |
[42] |
MacMillan J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul, 2001, 20: 387-442.
doi: 10.1007/s003440010038 pmid: 11986764 |
[43] |
Park J J, Jin P, Yoon J, Yang J, Jeong H J, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. Mutation in wilted dwarf and lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91-103.
doi: 10.1007/s11103-010-9656-x |
[44] | 徐文, 申浩, 郭军, 余晓丛, 李祥, 杨彦会, 马晓, 赵世杰, 宋健民. 旗叶蜡质含量不同小麦近等基因系的抗旱性. 作物学报, 2016, 42: 1700-1707. |
Xu W, Shen H, Guo J, Yu X C, Li X, Yang Y H, Ma X, Zhao S J, Song J M. Drought resistance of wheat NILs with different cuticular wax contents in flag leaf. Acta Agron Sin, 2016, 42: 1700-1707 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01700 |
|
[45] | 凌华. 油菜GDSL脂肪酶基因BnLIP1的克隆及其原核表达. 中国农学通报, 2007, (12): 102-106. |
Ling H. Cloning of a GDSL lipase gene from Brassica napus and preliminary study of its recombinant expression in Escherichia coli. Chin Agric Sci Bull, 2007, (12): 102-106 (in Chinese with English abstract). | |
[46] |
Zhao Y, Tian X J, Wang F, Zhang L Y, Xin M M, Hu Z R, Yao Y Y, Ni Z F, Sun Q X, Peng H R. Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biol, 2017, 17: 208-221.
doi: 10.1186/s12870-017-1158-4 pmid: 29157199 |
[1] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[2] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[3] | 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551. |
[4] | 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581. |
[5] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[6] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[7] | 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143. |
[8] | 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170. |
[9] | 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209. |
[10] | 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224. |
[11] | 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258. |
[12] | 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287. |
[13] | 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307. |
[14] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[15] | 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905. |
|