欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3328-3341.doi: 10.3724/SP.J.1006.2023.23075

• 耕作栽培·生理生化 • 上一篇    下一篇

不同磷钾肥施用水平下夏玉米花前叶片临界氮浓度稀释曲线与氮营养诊断研究

刘栋(), 张川, 任昊, 王洪章, 赵斌, 张吉旺, 任佰朝, 张永丽*(), 刘鹏*()   

  1. 山东农业大学作物生物学国家重点实验室 / 山东农业大学农学院, 山东泰安 271018
  • 收稿日期:2022-11-08 接受日期:2023-06-29 出版日期:2023-12-12 网络出版日期:2023-08-04
  • 通讯作者: * 刘鹏, E-mail: liupengsdau@126.com; 张永丽, E-mail: zhangyl@sdau.edu.cn
  • 作者简介:E-mail: ldsdau@126.com
  • 基金资助:
    山东省重点研发计划项目(LJNY202103);山东省现代农业产业技术体系建设项目(SDAIT-02-08);山东省重大科技创新工程计划项目(2021CXGC010804-05)

Establishment of critical nitrogen concentration model and nitrogen nutrient diagnosis for summer maize (Zea mays L.) leaves at vegetative growth stage under different phosphorus and potassium application rates

LIU Dong(), ZHANG Chuan, REN Hao, WANG Hong-Zhang, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, ZHANG Yong-Li*(), LIU Peng*()   

  1. State Key Laboratory of Crop Biology, Shandong Agricultural University / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2022-11-08 Accepted:2023-06-29 Published:2023-12-12 Published online:2023-08-04
  • Contact: * E-mail: liupengsdau@126.com;E-mail: zhangyl@sdau.edu.cn
  • Supported by:
    Key Research and Development project of Shandong Province(LJNY202103);Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08);Major Scientific and Technological Innovation Project in Shandong Province(2021CXGC010804-05)

摘要:

依托山东省东平县农业科学研究所自2010年设立的长期定位试验平台采取裂区试验设计(主区为磷肥, 裂区钾肥, 裂-裂区为氮肥, P2O5施入量为0、90、120和150 kg hm-2, 分别用P0、P1、P2和P3表示; K2O施入量为0、180、240和300 kg hm-2, 分别用K0、K1、K2和K3表示; 纯氮施入量为0、180、240和300 kg hm-2, 分别用N0、N1、N2和N3表示), 于2020—2021年以登海605为试验材料, 深入分析了养分施用量对夏玉米叶片干物质积累和氮浓度的影响, 构建了夏玉米营养生长阶段叶片临界氮稀释曲线, 探讨了不同养分投入量以氮营养指数模型诊断和评价夏玉米氮营养状况的可行性。结果表明: 夏玉米花前叶片干物质积累量和氮浓度随氮、磷、钾素用量的增加呈上升趋势; 叶片氮浓度随生育进程推进和叶片干物质积累呈下降趋势, 表现出稀释现象。叶片干物质积累量和氮浓度变化可分为氮素限制和非氮素限制2组, 据此分别构建了不同磷钾素用量下夏玉米叶片营养生长阶段临界氮浓度曲线模型: NLC0 = 2.745 LDM-0.529, NLC1 = 3.245 LDM-0.334, NLC2 = 3.557 LDM-0.290, NLC3 = 3.639 LDM-0.286。相关分析表明基于临界氮浓度稀释曲线计算的氮营养指数与相对叶片干物质积累量、相对籽粒产量均呈极显著相关。结合相对叶片干物质积累量和相对籽粒产量与氮营养指数之间的线性加平台关系, 可以很好地评价氮素限制和非氮素限制2种情况下的作物氮素营养状况。因此, 利用夏玉米叶片营养生长阶段临界氮稀释曲线和氮营养指数可有效预测夏玉米营养生长阶段临界氮浓度, 并表征夏玉米氮营养状况。

关键词: 夏玉米, 叶片氮浓度, 临界氮稀释曲线, 氮营养指数, 氮营养诊断

Abstract:

The experiments were carried out on the long-term positioning experiment platform of Dongping Agricultural Research Institute since 2010. The split-plot experimental design was used with different P2O5 input in the main plots and different K2O input in the sub-plot and different N input in the sub-sub plots. The P2O5 values were 0, 90, 120, and 150 kg hm-2, which were represented as P0, P1, P2, and P3, respectively. The K2O was 0, 180, 240, and 300 kg hm-2, expressed in terms of K0, K1, K2, and K3, respectively. The N was 0, 180, 240, and 300 kg hm-2, denoted as N0, N1, N2, and N3, respectively. From 2020 to 2021, Denghai 605 was used as the experimental material to deeply analyze the effect of nutrient application rate on dry matter and nitrogen concentration of summer maize leaves, aimed to build a critical nitrogen dilution curve for the nutrient growth stage of summer maize leaves, and explore the feasibility of diagnosing and evaluating nitrogen nutrition status of summer maize with nitrogen nutrition index model under different fertilizer application rates. The results showed that the dry matter and nitrogen concentration of summer maize leaves prior anthesis increased with the increment of nitrogen, phosphorus, and potassium fertilizer application. The nitrogen concentration in leaves decreased with the growth process and the accumulation of leaves dry matter, showing a dilution phenomenon. The variations of leaves dry matter and nitrogen concentration could be divided into two groups: nitrogen limitation and non-nitrogen limitation. Further, the curve model of critical nitrogen concentration at the vegetative growth stage of summer maize leaves under different phosphorus and potassium levels was constructed: NLC0 = 2.745 LDM-0.529, NLC1 = 3.245 LDM-0.334, NLC2 = 3.557 LDM-0.290, NLC3 = 3.639 LDM-0.286. Nitrogen nutrition index was calculated based on the critical nitrogen concentration dilution curve, which was highly significantly related to the relative leaves dry matter and the relative grain yield. Combining the linear plus platform relationship between nitrogen nutrition index and the relative leaves dry and the relative grain yield, the crop nitrogen status could be well evaluated under the conditions of nitrogen limitation and non-nitrogen limitation. Therefore, the critical nitrogen concentration and nitrogen index at vegetative growth stage of summer maize can effectively predict the critical nitrogen concentration and characterize the nitrogen nutrient status of summer maize.

Key words: summer maize, leaves N concentration, critical N dilution curve, N nutrition index, N nutrition diagnosis

表1

不同处理土壤播前的理化性状"

磷钾水平
Phosphorus-potassium rate
氮水平
Nitrogen rate
pH 有机质
Organic matter
(g kg-1)
速效氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
P0K0 N0 6.87 9.87 24.69 23.44 96.44
N1 6.92 10.18 33.63 21.36 96.16
N2 7.04 11.23 37.06 20.21 93.18
N3 7.12 11.82 39.02 20.19 93.22
P1K1 N0 6.93 10.33 26.31 27.33 116.44
N1 7.07 11.77 29.62 26.13 112.15
N2 7.15 11.45 32.12 26.32 113.77
N3 7.17 12.07 36.18 25.11 108.45
P2K2 N0 6.92 10.12 24.33 30.03 122.36
N1 7.06 11.25 28.19 29.07 126.35
N2 7.11 11.33 33.14 28.77 128.54
N3 7.15 11.45 34.37 28.67 122.07
P3K3 N0 7.01 10.23 27.13 32.14 124.66
N1 7.14 11.44 30.08 29.17 123.54
N2 7.03 11.76 31.56 29.33 127.83
N3 7.07 11.84 36.32 29.78 123.43

表2

夏玉米地上部干物质积累量、叶片干物质积累量、叶片氮浓度及产量的方差分析"

年度
Year
因子
Factor
拔节期 V6 小喇叭口期 V9 大喇叭口期 V12 开花期 VT 产量
Yield
PDM LDM NLa PDM LDM NLa PDM LDM NLa PDM LDM NLa
2020 PK ** *** *** ** *** *** ** *** *** ** *** *** ***
N *** *** *** *** *** *** *** *** *** *** *** *** ***
PK×N ** *** ** *** *** * ** *** ** ** *** *** ***
2021 PK *** *** *** ** *** *** ** *** *** *** *** *** ***
N *** *** *** *** *** *** *** *** *** ** *** *** ***
PK×N *** *** *** *** *** *** ** *** *** *** *** *** ***

图1

不同氮磷钾肥施用量对夏玉米地上部干物质积累的影响 V6、V9、V12和VT分别表示拔节期、小喇叭口期、大喇叭口期和开花期。误差线表示标准差。柱上不同字母表示同一年度同一生育时期不同处理间差异达到显著水平(P < 0.05)。"

图2

不同氮磷钾肥施用量对夏玉米叶片干物质的影响 缩写同图1。误差线表示标准差。柱上不同字母表示同一年度同一生育时期不同处理间差异达到显著水平(P < 0.05)。"

图3

不同氮磷钾肥施用水平对夏玉米叶片氮浓度的影响 缩写同图1。误差线表示标准差。"

图4

不同氮磷钾肥施用水平对夏玉米籽粒产量的影响 缩写同图1。误差线表示标准差。柱上不同字母表示同一年度同一生育时期不同处理间差异达到显著水平(P < 0.05)。"

图5

不同磷钾肥施用量下分别基于夏玉米地上部干物质积累量和叶片干物质积累量的叶片氮稀释曲线 处理同图1。"

图6

利用2021年数据验证基于夏玉米地上部干物质积累量和叶片干物质积累量的叶片氮稀释曲线 处理同图1。符号(●): 临界氮浓度值。实线(─)为叶片的临界氮浓度曲线(NC)。符号(▲)和符号(■): Nmax和Nmin由2020年不受氮素限制值和受氮素限制值数据获得。两侧的虚线(┄): 最小值曲线和最大值曲线。符号(Δ)和符号(): 2021年不受氮素限制值和受氮素限制值。"

表3

临界氮浓度稀释曲线的验证"

部位
Position
P0K0 P1K1 P2K2 P3K3
RMSE n-RMSE RMSE n-RMSE RMSE n-RMSE RMSE n-RMSE
地上部Aboveground 0.242 9.878% 0.203 8.342% 0.227 8.977% 0.257 9.939%
叶片Leaves 0.232 9.664% 0.219 7.603% 0.264 8.189% 0.308 9.213%

图7

不同氮磷钾肥施用水平下夏玉米叶片的氮营养指数动态变化 a、b、c、d: 基于夏玉米地上部干物质积累量的叶片临界氮浓度稀释曲线所得数据计算得出氮营养指数; e、f、g、h: 基于夏玉米叶片干物质积累量的叶片临界氮浓度稀释曲线所得数据计算得出氮营养指数。缩写同图1。"

图8

不同氮磷钾肥施用水平下夏玉米氮营养指数与相对叶片干物质积累量和相对籽粒产量的关系 缩写同图1。"

[1] He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. Regional gap in maize production, climate and resource utilization in China. Field Crops Res, 2020, 254: 107830.
doi: 10.1016/j.fcr.2020.107830
[2] 刘晓永. 中国农业生产中的养分平衡与需求研究. 中国农业科学院博士学位论文,北京, 2018.
Liu X Y. Study on Nutrients Balance and Requirement in Agricultural Production in China. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2018. (in Chinese with English abstract)
[3] 周青云, 李梦初, 漆栋良, 黄朝阳, 王紫丞, 徐茵, 李继福. 拔节期淹水条件下施氮量对春玉米生理特性的影响. 灌溉排水学报, 2020, 39(增刊2): 40-44.
Zhou Q Y, Li M C, Qi D L, Huang C Y, Wang Z Y, Xu Y, Li J F. Effects of nitrogen rate on physiological characteristics of spring maize under waterlogging at jointing stage. J Irrig Drain, 2020, 39(S2): 40-44. (in Chinese with English abstract)
[4] 王玉娜, 米国华. 北方春玉米施肥现状及节肥潜力. 玉米科学, 2021, 29(3): 151-158.
Wang Y N, Mi G H. Fertilizer application in maize production in northern China: current status and fertilization optimal potential. J Maize Sci, 2021, 29(3): 151-158 (in Chinese with English abstract).
[5] 杨锦忠, 张洪生. 玉米氮、磷、钾、水和二氧化碳资源积累与利用的Meta分析. 玉米科学, 2015, 23(5): 136-141.
Yang J Z, Zhang H S. Meta-analysis on resource consumption and use of nitrogen, phosphorus, potassium, water and carbon dioxide in maize. J Maize Sci, 2015, 23(5): 136-141. (in Chinese with English abstract)
[6] Zhao B. Determining of a critical dilution curve for plant nitrogen concentration in winter barley. Field Crops Res, 2014, 160: 64-72.
doi: 10.1016/j.fcr.2014.02.016
[7] El-Sobky E S E A, Abdo A I. Efficacy of using biochar, phosphorous and nitrogen fertilizers for improving maize yield and nitrogen use efficiencies under alkali clay soil. J Plant Nutr, 2020, 44: 467-485.
doi: 10.1080/01904167.2020.1845369
[8] Du L, Li Q, Li L, Li L, Wu Y W, Zhou F, Zhao B, Li X L, Liu Q L, Kong F L, Yuan J C. Construction of a critical nitrogen dilution curve for maize in Southwest China. Sci Rep, 2020, 10: 656-663.
doi: 10.1038/s41598-019-57296-9
[9] 侯云鹏, 杨建, 孔丽丽, 尹彩侠, 李前, 秦裕波, 王立春, 谢佳贵. 不同施磷水平对春玉米产量、养分吸收及转运的影响. 玉米科学, 2017, 25(3): 123-130.
Hou Y P, Yang J, Kong L L, Yin C X, Li Q, Qin Y B, Wang L C, Xie J G. Effect of different phosphorus levels on yield, nitrogen, phosphorus and potassium absorption and translocation of spring maize. J Maize Sci, 2017, 25(3): 123-130. (in Chinese with English abstract)
[10] 黄倩楠, 党海燕, 黄婷苗, 侯赛宾, 王朝辉. 我国主要麦区农户施肥评价及减肥潜力分析. 中国农业科学, 2020, 53: 4816-4834.
doi: 10.3864/j.issn.0578-1752.2020.23.009
Huang Q N, Dang H Y, Huang T M, Hou S B, Wang Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Sci Agric Sin, 2020, 53: 4816-4834 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.23.009
[11] 杨富亿, 文波龙, 李晓宇, 杨艳丽, 万斯昂, 欧阳玲, 刘文虎, 王昭伟, 孟祥鹏, 李重祥, 阿拉木斯, 韩奇. 达里诺尔湿地水环境和鱼类多样性调查: III. 达里湖水体中的氮和磷含量及分布. 湿地科学, 2021, 19: 47-58.
Yang F Y, Wen B L, Li X Y, Yang Y L, Wan S A, Ou-Yang L, Liu W H, Wang Z W, Meng X P, Li C X, Alamusi, Han Q. Investigation of water environment and fish diversity in dalinore wetland: III. Nitrogen and phosphorus content and distribution in the water body of Dalry Lake. Wetland Sci, 2021, 19: 47-58. (in Chinese with English abstract)
[12] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2010, 133: 670-681.
doi: 10.1111/ppl.2008.133.issue-4
[13] Jiang W T, Liu X H, Wang Y. Responses to potassium application and economic optimum K rate of maize under different soil indigenous K supply. Sustainability, 2018, 10: 2267-2277.
doi: 10.3390/su10072267
[14] Amaresh P, Meena S L, Behera U K. Growth, yield and nutrient uptake of maize (Zea mays L.) as influenced by tillage and potassium management under conservation agriculture. Indian J Agron, 2019, 63: 383-387.
[15] Ulrich A. Physiological bases for assessing the nutritional requirements of plants. Annu Rev Plant Physiol, 1952, 3: 207-228.
doi: 10.1146/arplant.1952.3.issue-1
[16] Lemaire G, Salette J, Sigogne M, Terrassonr J P. Relationship between growth dynamics of herbage stand and nitrogen harvest dynamics: study on environmental effects. Agronomy, 1984, 4: 423-430.
[17] 赵犇, 姚霞, 田永超, 刘小军, 曹卫星, 朱艳. 基于临界氮浓度的小麦地上部氮亏缺模型. 应用生态学报, 2012, 23: 3141-3148.
pmid: 23431802
Zhao B, Yao X, Tian Y C, Liu X J, Cao W X, Zhu Y. Accumulative nitrogen deficit models of wheat aboveground part based on critical nitrogen concentration. Chin J Appl Ecol, 2012, 23: 3141-3148. (in Chinese with English abstract)
pmid: 23431802
[18] Yao X, Ata-Ul-Karim S T, Zhu Y, Tian Y C, Liu X J, Cao W X. Development of critical nitrogen dilution curve in rice based on leaf dry matter. Eur J Agron, 2014, 55: 20-28.
doi: 10.1016/j.eja.2013.12.004
[19] 刘秋霞, 任涛, 张亚伟, 廖世鹏, 李小坤, 丛日环, 鲁剑巍. 华中区域直播冬油菜临界氮浓度稀释曲线的建立与应用. 中国农业科学, 2019, 52: 2835-2844.
doi: 10.3864/j.issn.0578-1752.2019.16.009
Liu Q X, Ren T, Zhang Y W, Liao S P, Li X K, Cong R H, Lu J W. Establishment and application of critical nitrogen concentration dilution curve of direct seeding winter rapeseed in central China. Sci Agric Sin, 2019, 52: 2835-2844 (in Chinese with English abstract).
[20] Herrmann A, Taube F. The range of the critical nitrogen dilution curve for maize (Zea mays L.) can be extended until silage maturity. Agron J, 2004, 96: 1131-1138.
doi: 10.2134/agronj2004.1131
[21] Noura Z, Marianne B, Gilles B, Annie C, Nicolas T, Athyna N C, Michel C N, Leon E P. Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agron J, 2008, 100: 271-273.
doi: 10.2134/agronj2007.0059
[22] 付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究. 作物学报, 2020, 46: 290-299.
doi: 10.3724/SP.J.1006.2020.93027
Fu J P, He Z, Jia B, Liu H F, Li Z Z, Liu Z. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation. Acta Agron Sin, 2020, 46: 290-299. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.93027
[23] Zhao B, Ata-Ul-Karim S T, Liu Z, Ning D F, Xiao J F, Liu Z G, Qin A Z, Nan J Q, Duan A W. Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crops Res, 2017, 208: 60-68.
doi: 10.1016/j.fcr.2017.03.010
[24] 苏文楠, 解君, 韩娟, 刘铁宁, 韩清芳. 夏玉米不同部位干物质临界氮浓度稀释曲线的构建及对产量的估计. 作物学报, 2021, 47: 530-545.
doi: 10.3724/SP.J.1006.2021.03021
Su W N, Xie J, Han J, Liu T N, Han Q F. Construction of critical nitrogen dilution curve based on dry matter in different organs of summer maize and estimation of grain yield. Acta Agron Sin, 2021, 47: 530-545. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.03021
[25] Justes E, Mary B, Machet J M, Thelier H L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot, 1994, 74: 397-407.
doi: 10.1006/anbo.1994.1133
[26] Zamuner E C, Loveras J, Echeverr H E. Use of a critical phosphorus dilution curve to improve potato crop nutritional management. Am J Potato Res, 2016, 93: 392-403.
doi: 10.1007/s12230-016-9514-8
[27] Jamieson P D, Porter J R, Wilson D R. A test of computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crops Res, 1991, 27: 337-350.
doi: 10.1016/0378-4290(91)90040-3
[28] 叶君, 高聚林, 王志刚, 于晓芳, 孙继颖, 李丽君, 高英波, 王海燕, 贾宁, 高鑫, 崔超. 施氮量对超高产春玉米花粒期叶片光合特性及产量的影响. 玉米科学, 2011, 19(6): 74-77.
Ye J, Gao J L, Wang Z G, Yu X F, Sun J Y, Li L J, Gao Y B, Wang H Y, Jia N, Gao X, Cui C. Effects of nitrogen on leaf photosynthesis and grain yield of super high-yield spring maize during the flowering and milking stage. J Maize Sci, 2011, 19(6): 74-77. (in Chinese with English abstract)
[29] Yao X, Zhao B, Tian Y C, Tian Y C, Liu X J, Ni J, Cao W J, Zhu Y. Using leaf dry matter to quantify the critical nitrogen dilution curve for winter wheat cultivated in eastern China. Field Crops Res, 2014, 159: 33-42.
doi: 10.1016/j.fcr.2013.12.007
[30] Ata-Ul-Karim S T, Liu X, Lu Z Z, Zheng H B, Cao W X, Zhu Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Res, 2017, 201: 32-40.
doi: 10.1016/j.fcr.2016.10.009
[31] Ata-Ul-Karim S T, Zhu Y, Liu X, Cao Q, Tian Y C, Cao W X. Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice. Sci Rep, 2017, 7: 42679.
doi: 10.1038/srep42679 pmid: 28262685
[32] Lemaire G, Jeuffroy M H, Gastal F. Diagnosis tool for plant and crop N status in vegetative stage. EurJ Agron, 2008, 28: 614-624.
[33] 安志超, 黄玉芳, 汪洋, 赵亚南, 岳松华, 师海斌, 叶优良. 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断. 植物营养与肥料学报, 2019, 25: 123-133.
An Z C, Huang Y F, Wang Y, Zhao Y N, Yue S H, Shi H B, Ye Y L. Critical nitrogen concentration dilution model and nitrogen nutrition diagnosis in summer maize with different nitrogen efficiencies. J Plant Nutr Fert, 2019, 25: 123-133. (in Chinese with English abstract)
[34] 梁效贵, 张经廷, 周丽丽, 李旭辉, 周顺利. 华北地区夏玉米临界氮稀释曲线和氮营养指数研究. 作物学报, 2013, 39: 292-299.
doi: 10.3724/SP.J.1006.2013.00292
Liang X G, Zhang J T, Zhou L L, Li X H, Zhou S L. Critical nitrogen dilution curve and nitrogen nutrition index for summer maize in North China plain. Acta Agron Sin, 2013, 39: 292-299. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00292
[35] 刘苗, 刘朋召, 师祖姣, 王小利, 王瑞, 李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断. 中国农业科学, 2022, 55: 932-947.
doi: 10.3864/j.issn.0578-1752.2022.05.008
Liu M, Liu P Z, Shi Z J, Wang X L, Wang R, Li J. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of summer maize under different nitrogen and phosphorus application rates. Sci Agric Sin, 2022, 55: 932-947 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.05.008
[36] 刘朋召, 师祖姣, 宁芳, 王瑞, 王小利, 李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断. 作物学报, 2020, 46: 1225-1237.
doi: 10.3724/SP.J.1006.2020.03007
Liu P Z, Shi Z J, Ning F, Wang R, Wang X L, Li J. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland. Acta Agron Sin, 2020, 46: 1225-1237. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.03007
[1] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[2] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[3] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[4] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248.
[5] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[6] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[7] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[8] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[9] 王瑞, 李向岭, 郭栋, 王新兵, 马玮, 李从锋, 赵明, 周宝元. 增施氮肥对夏玉米花后高温胁迫下籽粒碳氮代谢的影响[J]. 作物学报, 2023, 49(12): 3342-3351.
[10] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[11] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[12] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[13] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[14] 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选[J]. 作物学报, 2022, 48(12): 3130-3143.
[15] 宋杰, 任昊, 赵斌, 张吉旺, 任佰朝, 李亮, 王少祥, 黄金苓, 刘鹏. 施钾量对夏玉米维管组织结构与物质运输性能的影响[J]. 作物学报, 2022, 48(11): 2908-2919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .