欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 414-425.doi: 10.3724/SP.J.1006.2023.24022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗PIN-LIKES基因家族的鉴定与表达分析

潘洁明1(), 田绍锐3, 梁艳兰2, 朱宇林1, 周定港4, 阙友雄2, 凌辉1,*(), 黄宁1,*()   

  1. 1玉林师范学院农学院, 广西玉林 537000
    2福建农林大学 / 农业农村部福建甘蔗生物学与遗传育种重点实验室, 福建福州 350002
    3西南大学植物保护学院, 重庆 400700
    4湖南科技大学生命科学学院 / 经济作物遗传改良与综合利用湖南省重点实验室, 湖南湘潭 411201
  • 收稿日期:2022-01-17 接受日期:2022-05-05 出版日期:2022-05-12 网络出版日期:2022-05-12
  • 通讯作者: 凌辉,黄宁
  • 作者简介:E-mail: jiemingpan@163.com
  • 基金资助:
    国家自然科学基金项目(31801424);国家自然科学基金项目(32160435);玉林师范学院高层次人才启动项目(G2020ZK03)

Identification and expression analysis of PIN-LIKES gene family in sugarcane

PAN Jie-Ming1(), TIAN Shao-Rui3, LIANG Yan-Lan2, ZHU Yu-Lin1, ZHOU Ding-Gang4, QUE You-Xiong2, LING Hui1,*(), HUANG Ning1,*()   

  1. 1College of Agriculture, Yulin Normal University, Yulin 537000, Guangxi, China
    2Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Affairs / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3College of Plant Protection, Southwest University, Chongqing 400700, China
    4College of Life Science, Hunan University of Science and Technology/ Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan 411201, Hunan, China
  • Received:2022-01-17 Accepted:2022-05-05 Published:2022-05-12 Published online:2022-05-12
  • Contact: LING Hui,HUANG Ning
  • Supported by:
    National Natural Science Foundation of China(31801424);National Natural Science Foundation of China(32160435);Scientific Research Foundation of Yulin Normal University(G2020ZK03)

摘要:

PILS (PIN-LIKES)是一类新发现的生长素输出载体, 协助生长素的极性运输。本研究立足甘蔗割手密基因组和栽培品种转录组数据, 利用生物信息学分析技术, 分别在割手密和栽培品种中鉴定到11个PILS (Saccharum spontaneum PIN-LIKES, SsPILS )基因和4个PILS (Saccharum spp. hybrid PIN-LIKES, ScPILS)基因。结果表明, 11个SsPILS基因家族成员分布于6条染色体上, 基因内含子数量介于5~11个。系统进化树分析发现, 割手密PILS与水稻PILS有较高同源性, 归属于3个不同的系统发育分支。转录组数据分析显示, SsPILS1c的同源基因ScPILS1c在受高粱花叶病毒和黑穗病菌胁迫甘蔗栽培种中差异表达。通过RT-PCR扩增技术, 克隆获得ScPILS1c基因序列(NCBI accession number: OM258732)。该基因全长cDNA为1332 bp, 包含一个1233 bp的完整开放阅读框, 编码410个氨基酸, 理论等电点(pI)为6.17, 不稳定系数为39.31, 平均疏水性值为0.689, 预测ScPILS1c为稳定酸性疏水蛋白。其编码蛋白的二级结构主要包括α-螺旋(48.54%)和无规则卷曲(35.37%), 这与三级结构预测结果相符。qRT-PCR表达分析揭示, ScPILS1c基因在甘蔗中的表达具有组织特异性, 在蔗髓中表达量最低、皮中的表达量最高, 同时该基因的表达受H2O2及黑穗病菌的显著性诱导。亚细胞定位表明, ScPILS1c基因的编码蛋白主要定位于细胞膜。以上结果为深入研究甘蔗PIN-LIKES基因的结构和功能积累了基础资料。

关键词: 甘蔗, PILS, 生物信息学, 实时荧光定量PCR, 基因家族

Abstract:

PILS (PIN-LIKES) is a newly reported auxin efflux carrier, which is involved in the polar transport of auxin. In this study, bioinformatics analysis indicated that 11 SsPILS genes and 4 ScPILS genes were identified from the Saccharum spontaneum genomic and the sugarcane cultivars transcriptomic data. 11 SsPILS gene family members were located at 6 chromosomes, and had 5-11 introns, respectively. Phylogenetic tree analysis showed that these PILS from S. spontaneum was clustered into 3 different branches and had highly homologous with PILS from Oryza sativa. The transcriptomic data revealed that, ScPILS1c, the ortholog of SsPILS1c, was differentially expressed in the sugarcane cultivars under Sorghum mosaic virus and Sporisorium scitamineum stress. ScPILS1c (NCBI accession number: OM258732), cloned by RT-PCR, had 1332 bp in length, containing a 1233 bp complete open reading frame and encoding 410 amino acids residues. The isoelectric point, instability coefficient, and average hydrophobicity value of ScPILS1c were 6.17, 39.31, and 0.689, respectively. The ScPILS1c was predicted as a stable acid hydrophobicity protein. The secondary structure of ScPILS1c protein was mainly composed of α-helix (48.54%) and random coils (35.37%) and was highly consistent with the prediction of tertiary structure. The qRT-PCR demonstrated that the relative expression of ScPILS1c was tissue-specific and the highest expression was observed in epidermis while the lowest in pith. ScPILS1c was significantly induced by H2O2 treatment and Sporisorium scitamineum infection. Transient expression on Nicotiana benthamiana leaves suggested that ScPILS1c was localized on cell membrane. This study provides a reference for further research on the structure and function of PILS gene in sugarcane.

Key words: sugarcane, PILS gene, bioinformatics, qRT-PCR, gene family

表1

本研究所用引物"

引物
Primer name
引物序列
Primer sequence (5'-3')
PILS1c-F GCGCGGTTGTTGAGGATAAG
PILS1c-R ACGACAATACAACACTTCGGC
YFP-PILS1c-F CGAACGATACTCGAGGTCGACATGGATCTCGTACAACTCTTCATC
YFP-PILS1c-R GCTCACCATACTAGTGGATCCCGACAGCGTCCACATGAAGAAG
q-PILS1c-F AGCTCTTTGCTCCTTCGACC
q-PILS1c-R GACAACTATGACGCCGGCTA
CUL-F TGCTGAATGTGTTGAGCAGC
CUL-R TTGTCGCGCTCCAAGTAGTC
CAC-F ACAACGTCAGGCAAAGCAAA
CAC-R AGATCAACTCCACCTCTGCG

图1

甘蔗割手密PILS基因家族的染色体分布(A)及共线性分析(B) 红色连线表示甘蔗割手密PILS基因家族间的共线性, 灰色连线表示割手密所有基因间的共线性。"

表2

甘蔗割手密PILS蛋白的理化性质分析及亚细胞定位预测"

蛋白名称Protein name 基因编号
Genetic code
氨基酸个数Number of amino acids 等电点
pI
分子量
Molecular weight (kD)
亚细胞定位
Subcellular localization
SsPILS1a Sspon.02G0011550-3C 847 9.76 89.11 质膜 Plasma membrane
SsPILS1b Sspon.02G0011610-1A 436 7.47 46.48 质膜 Plasma membrane
SsPILS1c Sspon.02G0011610-2B 422 7.63 45.10 质膜 Plasma membrane
SsPILS1d Sspon.02G0011610-3C 436 8.02 46.47 质膜 Plasma membrane
SsPILS1e Sspon.02G0011550-1A 412 8.02 44.08 质膜 Plasma membrane
SsPILS5a Sspon.01G0050600-1C 339 7.59 36.61 质膜 Plasma membrane
SsPILS5b Sspon.01G0001780-4D 431 7.01 47.33 质膜 Plasma membrane
SsPILS6a Sspon.03G0003950-1P 433 8.52 46.92 质膜 Plasma membrane
SsPILS6b Sspon.03G0003950-2C 433 8.56 46.97 质膜 Plasma membrane
SsPILS7a Sspon.02G0008260-1A 337 8.10 36.37 质膜 Plasma membrane
SsPILS7b Sspon.02G0008260-2B 301 6.12 32.59 质膜 Plasma membrane

图2

甘蔗割手密(Ss)、拟南芥(At)和水稻(Os) PILS蛋白的系统进化树分析"

图3

甘蔗割手密PILS基因家族蛋白保守基序(A)和基因结构分析(B) A图中, 不同颜色方框表示不同保守基序, 黑线表示氨基酸序列。B图中, 不同颜色方框表示不同基因结构, 黑线表示内含子。"

图4

ScPILS基因在不同胁迫下的表达 A: 高粱花叶病毒胁迫; B: 黑穗病菌胁迫。"

图5

ScPILS1c蛋白生物信息学分析 A: SsPILS1c基因的开放读码框及其所编码蛋白; B: ScPILS1c蛋白的保守结构域; C: ScPILS1c蛋白的跨膜结构; D: ScPILS1c三级结构模型与5aymA 比对; E: ScPILS1c三级结构模型, 红色为跨膜结构域。"

图6

ScPILS1c蛋白氨基酸疏水性/亲水性预测"

图7

ScPILS1c基因在不同组织中的表达 柱上不同小写字母表示在0.05水平差异显著。"

图8

ScPILS1c基因在不同胁迫下的表达 A: H2O2胁迫; B: 黑穗病菌胁迫。柱上不同小写字母表示在0.05水平差异显著。"

图9

甘蔗ScPILS1c在本氏烟下表皮细胞中的亚细胞定位"

[1] Gao Y B, Zhang Y, Zhang D, Dai X H, Estelle M, Zhao Y D. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA, 2015, 112: 2275-2280.
doi: 10.1073/pnas.1500365112
[2] Enders T A, Strader L C. Auxin activity: past, present, and future. Am J Bot, 2015, 102: 180-196.
doi: 10.3732/ajb.1400285 pmid: 25667071
[3] Chandler J W. Auxin response factors. Plant Cell Environ, 2016, 39: 1014-1028.
doi: 10.1111/pce.12662
[4] Miao Z Q, Zhao P X, Mao J L, Yu L H, Yang Y, Hui T, Liu Z B, Xiang C B. HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. Plant Cell, 2018, 30: 2761-2778.
doi: 10.1105/tpc.18.00584
[5] Ishida J K, Wakatake T, Yoshida S, Takebayashi Y, Kasahara H, Wafula E, Depamphilis C W, Namba S, Shirasu K. Local auxin biosynthesis mediated by a YUCCA flavin monooxygenase regulates haustorium development in the parasitic plant Phtheirospermum japonicum. Plant Cell, 2016, 28: 1795-1814.
doi: 10.1105/tpc.16.00310
[6] Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey P N, Busch W, Novak O, Ljung K, Di Paola L, Mare A F, Costantino P, Grieneisen V A, Sabatini S. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc Natl Acad Sci USA, 2017, 114: E7641-E7649.
[7] 颜爽爽, 邱正坤, 余炳伟, 明方艳, 陈长明, 雷建军, 曹必好. 植物生长素响应高温胁迫研究进展. 园艺学报, 2020, 47: 2238-2246.
Yan S S, Qiu Z K, Yu B W, Ming F Y, Chen C M, Lei J J, Cao B H. Advances in phytohormone auxin response to high temperature. Act Hortic Sin, 2020, 47: 2238-2246. (in Chinese with English abstract)
[8] Schaker P D, Palhares A C, Taniguti L M, Peters L P, Creste S, Aitken K S, Van Sluys M A, Kitajima J P, Vieira M L, Monteiro-Vitorello C B. RNAseq transcriptional profiling following whip development in sugarcane smut disease. PLoS One, 2016, 11: e0162237.
doi: 10.1371/journal.pone.0162237
[9] Yang Y Y, Gao S W, Su Y C, Lin Z L, Guo J L, Li M J, Wang Z J, Que Y X, Xu L P. Transcripts and low nitrogen tolerance: regulatory and metabolic pathways in sugarcane under low nitrogen stress. Environ Exp Bot, 2019, 163: 97-111.
doi: 10.1016/j.envexpbot.2019.04.010
[10] Strader L C, Zhao Y. Auxin perception and downstream events. Curr Opin Plant Biol, 2016, 33: 8-14.
doi: S1369-5266(16)30061-9 pmid: 27131035
[11] 邹纯雪, 门淑珍. 生长素的外输载体PIN蛋白家族研究进展. 中国细胞生物学学报, 2013, 35: 574-582.
Zou C X, Men S Z. Research advances in auxin efflux carrier PIN proteins. Chin J Cell Biol, 2013, 35: 574-582. (in Chinese with English abstract)
[12] 潘建伟, 张晨燕, 周哉材. 生长素极性输出载体PIN的研究进展. 浙江师范大学学报(自然科学版), 2018, 41: 436-443.
Pan J W, Zhang C Y, Zhou J C. Research progress of auxin efflux transporter PIN proteins. J Zhejiang Norm Univ (Nat Sci Edn), 2018, 41: 436-443. (in Chinese with English abstract)
[13] Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete M R, Zhu J, Dobrev P I, Lee Y, Zažímalovà E, Petrášek J, Geisler M, Friml J, Kleine-Vehn J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 2012, 485: 119-122.
doi: 10.1038/nature11001
[14] Santos F, Teale W, Fleck C, Volpers M K, Ruperti B, Palme K. Modelling polar auxin transport in developmental patterning. Plant Biol, 2010, 12: 1438-8677.
[15] Wang J, Jin Z, Yin H, Yan B, Ren Z Z, Xu J, Mu C J, Zhang Y, Wang M Q, Liu H. Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting. Russ J Plant Physiol, 2014, 61: 688-696.
doi: 10.1134/S102144371405015X
[16] Friml J. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol, 2010, 89: 231-235.
doi: 10.1016/j.ejcb.2009.11.003 pmid: 19944476
[17] Murphy A S. Seven things we think we know about auxin transport. Mol Plant, 2011, 4: 487-504.
doi: 10.1093/mp/ssr034 pmid: 21505044
[18] Zwiewka M, Bilanoviová V, Seifu Y W, Nodzyński T. The buts and bolts of PIN auxin efflux carriers. Front Plant Sci, 2019, 10: 985.
doi: 10.3389/fpls.2019.00985 pmid: 31417597
[19] Luschnig C, Vert G. The dynamics of plant plasma membrane proteins: PINs and beyond. Development, 2014, 141: 2924-2938.
doi: 10.1242/dev.103424 pmid: 25053426
[20] Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell, 2015, 27: 20.
doi: 10.1105/tpc.114.134874
[21] Habets M E, Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signal. New Phytol, 2014, 203: 362-377.
doi: 10.1111/nph.12831
[22] Feraru E, Vosolsobe S, Feraru M I, Petrasek J, Kleine-Vehn J. Evolution and structural diversification of PILS putative auxin carriers in plants. Front Plant Sci, 2012, 3: 227.
doi: 10.3389/fpls.2012.00227 pmid: 23091477
[23] Mohanta T K, Mohanta N, Bae H. Identification and expression analysis of PIN-Like (PILS) gene family of rice treated with auxin and cytokinin. Genes (Basel), 2015, 6: 622-640.
doi: 10.3390/genes6030622
[24] Song S L, Wang Z P, Ren Y M, Sun H M. Full-length transcriptome analysis of the ABCB, PIN/PIN-LIKES, and AUX/LAX families involved in somatic embryogenesis of Lilium pumilum DC. Fisch. Int J Mol Sci, 2020, 21: 453.
doi: 10.3390/ijms21020453
[25] Feraru E, Feraru M I, Barbez E, Waidmann S, Sun L, Gaidora A, Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2019, 116: 3893-3898.
doi: 10.1073/pnas.1814015116
[26] Beziat C, Barbez E, Feraru M I, Lucyshyn D, Kleine-Vehn J. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nat Plants, 2017, 3: 17105.
doi: 10.1038/nplants.2017.105 pmid: 28714973
[27] Guo J L, Xu L P, Su Y C, Wang H B, Gao S W, Xu J S, Que Y X. ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int, 2013, 2013: 904769.
[28] Verma A K, Agarwal A K, Dubey R S, Solomon S, Singh S B. Sugar partitioning in sprouting lateral bud and shoot development of sugarcane. Plant Physiol Biochem, 2013, 62: 111-115.
doi: 10.1016/j.plaphy.2012.10.021
[29] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8): 147-152.
Liu Y Q, Li Y P, Liang H W, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry. World Agric, 2015, (8): 147-152. (in Chinese with English abstract)
[30] 王明强, 李文凤, 黄应昆, 王晓燕, 卢文洁, 罗志明. 我国大陆蔗区发生的甘蔗病毒病及防控对策. 中国糖料, 2010, (4): 55-58.
Wang M Q, Li Y P, Huang Y K, Wang X Y, Lu W J, Luo Z M. Occurrence and controlling strategies on sugarcane viral diseases in Chinese mainland. Sugar Crops China, 2010, (4): 55-58. (in Chinese with English abstract)
[31] 周晚秋, 娄春, 何子林, 傅峻涛. 巴西生物燃料技术现状与发展. 中外能源, 2017, 22: 24-31.
Zhou W Q, Lou C, He Z L, Fu J T. Status quo and development of Brazilian biofuel technologies. Sino-global Energy, 2017, 22: 24-31. (in Chinese with English abstract)
[32] 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议—基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, (4): 65-72.
Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand sugar industry. Sugar Canesugar, 2015, (4): 65-72. (in Chinese with English abstract)
[33] 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望. 农业展望, 2018, 14(11): 40-46.
Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season. Outlook Agric, 2018, 14(11): 40-46. (in Chinese with English abstract)
[34] 李谭面. 来宾市甘蔗高产稳产高糖栽培技术. 乡村科技, 2017, (15): 63-64.
Li T M. Cultivation techniques of sugarcane with high and stable yield and sugar in Laibin city. Rural Sci Technol, 2017, (15): 63-64. (in Chinese with English abstract)
[35] 李瑞美, 潘世明, 王水琦, 林一心. 糖能兼用甘蔗新品种闽糖92-142的选育研究. 福建农业学报, 2006, 21: 98-100.
Li R M, Pan S M, Wang S Q, Lin Y X. Selection and breeding of new sugarcane variety mintang 92-142. Fujian J Agric Sci, 2006, 21: 98-100. (in Chinese with English abstract)
[36] 蔡文燕, 吴水金. 能源甘蔗—甘蔗糖业发展的新亮点. 甘蔗糖业, 2006, (3): 22-25.
Cai W Y, Wu S J. Energy sugarcane-a new bright spot in the development of cane sugar industry. Sugarc Canes, 2006, (3): 22-25. (in Chinese with English abstract)
[37] Lalman J A, Shewa W A, Gallagher J, Ravella S. Biofuels production from renewable feedstocks. Springer, 2016, pp. 193-220.
[38] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lv M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, Van Buren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2
[39] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[40] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into the sugarcane-sorghum mosaic virus interaction. Trop Plant Biol, 2018, 11: 163-176.
doi: 10.1007/s12042-018-9210-6
[41] Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One, 2014, 9: e106476.
doi: 10.1371/journal.pone.0106476
[42] Zhang D, Gao F L, Jakovlić I, Zou H, Zhang J, Li W X, Wang G T. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour, 2020, 20: 348-355.
doi: 10.1111/1755-0998.13096 pmid: 31599058
[43] Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
doi: 10.1371/journal.pone.0097469
[44] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析. 作物学报, 2021, 47: 882-893.
doi: 10.3724/SP.J.1006.2021.04128
Huang N, Hui Q L, Fang Z M, Li S S, Ling H, Que Y X, Yuan Z N. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane. Acta Agron Sin, 2021, 47: 882-893. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04128
[45] Staff P O. Correction: comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2015, 10: e0118444.
doi: 10.1371/journal.pone.0118444
[46] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[47] Heisler M G, Ohno C, Das P, Sieber P, Reddy G V, Long J A, Meyerowitz E M. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol, 2005, 15: 1899-1911.
pmid: 16271866
[48] Geldner N. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001, 413: 425-428.
doi: 10.1038/35096571
[49] Zhou J J, Luo J. The PIN-FORMED auxin efflux carriers in plants. Int J Mol Sci, 2018, 19: 2759.
doi: 10.3390/ijms19092759
[50] Sun L, Feraru E, Feraru M I, Wang Z Y, Correspondence K V. PIN-likes coordinate brassinosteroid signaling with nuclear auxin input in Arabidopsis thaliana. Curr Biol, 2020, 30: 1579-1588.
doi: S0960-9822(20)30175-5 pmid: 32169207
[51] Béziat C, Kleine-Vehn J. The road to auxin-dependent growth repression and promotion in apical hooks. Curr Biol, 2018, 28: 519-525.
doi: S0960-9822(18)30102-7 pmid: 29689235
[52] Sauer M, Kleine-Vehn J. PIN-FORMED and PIN-LIKES auxin transport facilitators. Development, 2019, 146: dev168088.
doi: 10.1242/dev.168088
[53] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能初探. 作物学报, 2021, 47: 1-20.
Dong Y K, Huang D Q, Gao Z, Chen Y. Preliminary study of identification, expression profile of soybean PIN-like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules. Acta Agron Sin, 2021, 47: 1-20. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02021
[54] Zou X, Long J, Zhao K, Peng A, Chen M, Long Q, He Y, Chen S. Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck). PLoS One, 2019, 14: e0220017.
doi: 10.1371/journal.pone.0220017
[55] Fan S, Chang Y, Liu G, Shang S, Tian L, Shi H. Molecular functional analysis of auxin/indole-3-acetic acid proteins (Aux/IAAs) in plant disease resistance in cassava. Physiol Planta, 2020, 168: 88-97.
doi: 10.1111/ppl.12970
[56] 陈倩, 卓维, 李佳皓, 鲁黎明, 李立芹. 烟草Nt14-3-3基因的克隆及生物信息学和表达模式分析. 烟草科技, 2018, 51(1): 1-7.
Chen Q, Zhuo W, Li J H, Lu L M, Li L Q. Cloning, bioinformatics and expression pattern analysis of Nt14-3-3. Tob Sci Technol, 2018, 51(1): 1-7. (in Chinese with English abstract)
[57] 郭玉敏, 张云华. 玉米ZmWRKY53基因克隆及诱导表达分析. 分子植物育种, 2020, 18: 719-728.
Guo Y M, Zhang Y H. Cloning and induced expression analysis of ZmWRKY53 in Zea mays. Mol Plant Breed, 2020, 18: 719-728. (in Chinese with English abstract)
[58] 于永昂, 睢晓湉, 张蕾, 张夏冰. 小麦转录因子TaWRKY28基因克隆与抗旱性分析. 西北农林科技大学学报(自然科学版), 2022, 50(4): 32-41.
Yu Y A, Sui X T, Zhang L, Zhang X B. Cloning and function against drought stress of TaWRKY28transcription factor gene. J North A&F Univ (Nat Sci Edn), 2022, 50(4): 32-41. (in Chinese with English abstract)
[59] 秦朋飞, 尚小光, 宋健, 郭旺珍. 棉花酰基辅酶A结合蛋白(ACBP)家族基因的发掘及在非生物胁迫抗性中的功能鉴定. 作物学报, 2016, 42: 1577-1591.
doi: 10.3724/SP.J.1006.2016.01577
Qin P F, Shang X G, Song J, Guo W Z. Genome-wide identification of acyl-CoA-binding protein (ACBP) gene family and their functional analysis in abiotic stress tolerance in cotton. Acta Agron Sin, 2016, 42: 1577-1591. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01577
[60] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析. 作物学报, 2022, 48: 608-623.
doi: 10.3724/SP.J.1006.2022.14004
Ji R, Jiang W, Liu M, Zhao P, Zhang Q Q, Li T X, Wang D F, Fan W J, Zhang A J, Tang Z H. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato. Acta Agron Sin, 2022, 48: 608-623. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14004
[61] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析. 作物学报, 2022, 48: 840-850.
doi: 10.3724/SP.J.1006.2022.14061
Yuan D S, Deng W Y, Wang Z, Peng X, Zhang X L, Yao M N, Miu W J, Zhu D M, Li J N, Liang Y. Cloning and functional analysis of BnMAPK2 gene in Brassica napus. Acta Agron Sin, 2022, 48: 840-850. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14061
[62] 黄宁, 范金燕, 赖洁玲, 刘秦, 阙友雄, 朱宇林, 凌辉. 甘蔗类质子梯度调节蛋白基因的生物信息学及表达分析. 分子植物育种, 2021.
Huang N, Fan J Y, Lai J L, Liu Q, Que Y X, Zhu Y L, Ling H. The bioinformatics and expression analysis of a sugarcane proton gradient regulation like 1 gene. Mol Plant Breed, 2021. (in Chinese with English abstract)
[63] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用. 作物学报, 2021, 47: 224-236.
doi: 10.3724/SP.J.1006.2021.01042
Meng Y Y, Wei C R, Fan R Q, Yu X M, Wang X D, Zhao W Q, Wei X Y, Kang Z S, Liu D Q. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex. Acta Agron Sin, 2021, 47: 224-236. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01042
[1] 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702.
[2] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[3] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45.
[4] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[5] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[6] 马骊, 白静, 赵玉红, 孙柏林, 侯献飞, 方彦, 王旺田, 蒲媛媛, 刘丽君, 徐佳, 陶肖蕾, 孙万仓, 武军艳. 冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析[J]. 作物学报, 2023, 49(1): 153-166.
[7] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[8] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[9] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[10] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[11] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[12] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[13] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[14] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[15] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!