欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 966-977.doi: 10.3724/SP.J.1006.2023.21023

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应

周宾寒1(), 杨竹1, 王书平1, 方正武1, 胡赞民2, 徐兆师3, 张迎新1,*()   

  1. 1长江大学农学院/主要粮食作物产业化湖北省协同创新中心, 湖北荆州 434025
    2中国科学院遗传与发育生物学研究所, 北京 100101
    3中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程/农业部麦类生物学与遗传育种重点实验室, 北京 100081
  • 收稿日期:2022-03-29 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-22
  • 通讯作者: *张迎新, E-mail: zhangyingxin1985@126.com
  • 作者简介:E-mail: z18171732900@126.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0100800);国家转基因生物新品种培育重大专项(2018ZX0800909B);湖北省重点研发计划项目(2022BBA0035);湖北省科学技术重大创新专项(2018ABA085)

Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses

ZHOU Bin-Han1(), YANG Zhu1, WANG Shu-Ping1, FANG Zheng-Wu1, HU Zan-Min2, XU Zhao-Shi3, ZHANG Ying-Xin1,*()   

  1. 1College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Jingzhou 434025, Hubei, China
    2Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
  • Received:2022-03-29 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-22
  • Contact: *E-mail: zhangyingxin1985@126.com
  • Supported by:
    National Key Research and Development Programs of China(2017YFD0100800);National Major Project for Developing New GM Crops(2018ZX0800909B);Key Research and Development Program of Hubei Province(2022BBA0035);Major Project for Special Technology Innovation of Hubei Province(2018ABA085)

摘要:

LTR (长末端重复, long terminal repeat)反转录转座子占小麦基因组的60%以上, 筛选小麦基因组中具有转座活性的LTR反转录转座子, 并分析其在非生物胁迫下的响应, 对研究反转录转座子在小麦抗逆境胁迫中的作用具有重要意义。本研究通过生物信息学分析, 从转座子数据库(TREP database)中筛选出4个具有完整结构的LTR反转录转座子Fatima、Wis、Angela和Babara; 同时利用实时荧光定量PCR (qRT-PCR)、甲基化特异PCR (methylmion specific PCR, MSP)和转座子展示(transposon display, TD)技术分别分析了它们在盐、ABA、H2O2和干旱等处理的小麦幼苗期(二叶一心)叶和根中的表达水平、甲基化水平和转座活性变化。结果表明, 这4个反转录转座子在正常条件下均存在基础水平的转录, 并且能够响应上述4种胁迫而发生转录水平的变化, 且在相同胁迫条件下表达水平变化趋势一致。Fatima、Angela和Babara在非生物胁迫处理下表达水平的提高与其甲基化水平的降低有关, Wis则相反。反转录转座子LTR序列含有胁迫响应顺式作用元件, 但在非生物胁迫条件下顺式作用元件对这4个反转录转座子的调控作用不显著。与叶相比, 这4个反转录转座子在根中对胁迫的响应程度更高, 且在盐和ABA处理下转座活性更强。本研究将有助于进一步揭示LTR反转录转座子对非生物胁迫的响应规律, 为进一步研究利用反转录转座子进行小麦抗逆育种的遗传改良积累资料。

关键词: 小麦, 非生物胁迫, LTR反转录转座子, 相对表达水平, 转座

Abstract:

LTR (long terminal repeat) retrotransposable elements account for more than 60% of rye genome. It is of great significance to screen active LTR retrotransposons from wheat genome and analyze their transposition, the relative expression levels, and methylation levels under abiotic stress in exploring the role of retrotransposable elements in improving wheat anti-stress ability. Four active LTR retrotransposons (Fatima, Wis, Angela, and Babara) with complete structure were selected from the TREP database by bioinformatics analysis. The relative expression levels, methylation dynamics, and transposition activity of the four LTR retrotransposons were then analyzed at seedling stage (two leaves with one heart) leaves and roots of the stress-treated (NaCl, ABA, H2O2, and PEG) wheat seedlings by qRT-PCR, methylation-specific polymerase chain reaction (MSP), and transposon display method. The results suggested that the four retrotransposons had basic transcription activity under normal conditions, which could be changed under stress conditions, and their variation tendency was similar in the same stress conditions. The up-regulation of Fatima, Angela, and Babara was due to their down-regulated methylation levels, while Wis was opposite. The 3′LTR of LTR retrotransposons contained many stress-responsive cis-elements, but the regulatory effect of which were not obvious under stress treatments. Compared with that in leaves, the four LTR retrotransposons in roots were more sensitive to stresses and had higher transposition activity. This study will help to further reveal the response regularity of LTR retrotransposons under stress conditions and accumulate data for improving of stress resistance breeding wheat by using transposable elements.

Key words: wheat (Triticum aestivum L.), abiotic stress, LTR retrotransposons, the relative expression level, transposition

表1

荧光定量引物序列"

基因
Gene name
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
TaActin CTCCCTCACAACAACCGC TACCAGGAACTTCCATACCAAC
Fatima AAAAAGACCAGGCTGCAACG GCGCTGATATGTTGTGCTGG
Wis CGACTTGTGGCGAAGAGTTTG GCGATGCTTAAGTCCGTCAG
Angela GTTGGCGATTGCCGCATTTT TCAACAAAACCTTCCGGTTGC
Babara GGATTACGTTGCTGCTGAGG AGCAGCTGTGCCAAATTCCT

表2

甲基化分析引物序列"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
M-Fatima GGTTCGAATTTGGGTAAAAATATC AACATCCTTCCTAATAACGACGAC
U-Fatima GGTTCGAATTTGGGTAAAAATATC AAACATCCTTCCTAATAACAACAAC
M-Wis TAAGATTGAATAAGGTATTGGGATATC GACTCTCTAATCAACCAACAACGA
U-Wis AATAAGATTGAATAAGGTATTGGGATATT CAACTCTCTAATCAACCAACAACAA
M-Angela GATATTTTGTTGGATCGGAGTTC AAAAATAATCGTACGTCTTCACGAT
U-Angela GATATTTTGTTGGATTGGAGTTTG AAAAATAATCATACATCTTCACAAT
M-Babara TATTTAAGTGAGGTAAGTTTTTCGT AATAATACTATCATACATCCACGTT
U-Babara TATTTAAGTGAGGTAAGTTTTTTGT AATAATACTATCATACATCCACATT

表3

转座子展示分析引物序列"

引物名称
Primer name
序列
Sequence (5'-3')
引物名称
Primer name
序列
Sequence (5'-3')
Fatima-1 CTCCCTCAGTCAGTGTCAAAA M-CA GACGATGAGTCCTGAGTAACA
Fatima-2 GGTCCCGAACTGTGCGTCT M-CC GACGATGAGTCCTGAGTAACC
Wis-1 ATGATTGTTGTTCGTCCTAT M-CG GACGATGAGTCCTGAGTAACG
Wis-2 CTCCCTCAGTCAGTGTCAAAA M-CT GACGATGAGTCCTGAGTAACT
Angela-1 ACAATTCTAGCATGAATAA M-GA GACGATGAGTCCTGAGTAAGA
Angela-2 AACTTTATTATTGCCTCTA M-GC GACGATGAGTCCTGAGTAAGC
Babara-1 TTAGCCAATCCTTTGTCCT M-GG GACGATGAGTCCTGAGTAAGG
Babara-2 TTGAAGGAGTTCCCACAAC M-GT GACGATGAGTCCTGAGTAAGT
M-0 GACGATGAGTCCTGAGTAA M-TA GACGATGAGTCCTGAGTAATA
M-AA GACGATGAGTCCTGAGTAAAA M-TC GACGATGAGTCCTGAGTAATC
M-AC GACGATGAGTCCTGAGTAAAC M-TG GACGATGAGTCCTGAGTAATG
M-AG GACGATGAGTCCTGAGTAAAG M-TT GACGATGAGTCCTGAGTAATT
M-AT GACGATGAGTCCTGAGTAAAT

图1

小麦中 4个LTR反转录转座子的结构分析 GAG: 群特异性抗原; AP: 天冬氨酸酶; INT: 整合酶; RT: 反转录酶; RH: 核糖核酸酶H。"

图2

不同非生物胁迫下小麦幼苗叶和根中的转座子表达模式分析 A: Fatima; B: Wis; C: Angela; D: Babara; Mock: 对照。采用Tukey法进行检验, *表示在0.05概率水平差异显著; **表示在0.01概率水平差异显著; ***表示在0.001概率水平差异显著。"

表4

小麦反转录转座子中胁迫应答相关顺式作用元件分析"

转座子
Exist in Tes
胁迫应答
Stress response
顺式
作用因子
CREs
序列(核苷酸)
Sequence
(nucleotides)
参考文献
Reference
Fatima 光学响应元件 Light response element Box 4 ATTAAT
无氧反应响应元件 Anaerobic reaction response element ARE AAACCA
Wis 脱落酸响应元件 Cis-acting element involved in abscisic acid responsiveness ABRE ACGTG [26]
ABRE TACGTGTC [27]
干旱响应元件 Drought response element MYC CATGTG [30]
MYC CANNTG [31]
光学响应元件 Light response element ACE GACACGTATG
G-Box CACGTT
G-box CACGAC
无氧反应响应元件 Anaerobic reaction response element ARE AAACCA
Angela 脱落酸响应元件 Cis-acting element involved in abscisic acid responsiveness DRE1 ACCGAGA [28]
LTRE CCGAC [29]
干旱响应元件 Drought response element MYC CATGTG [30]
MYC CANNTG [31]
LTRE CCGAC [29]
光学响应元件 Light response element G-box CACGAC
低温响应元件 Low temperature response element LTR CCGAAA
Babara 脱落酸响应元件 Cis-acting element involved in abscisic acid responsiveness ABRE ACGTG [26]
DRE1 ACCGAGA [28]
干旱响应元件 Drought response element MYC CATGTG [30]
MYC CANNTG [31]
光学响应元件 Light response element G-Box CACGTT
无氧反应响应元件 Anaerobic reaction response element ARE AAACCA
低温响应元件 Low temperature response element LTR CCGAAA
赤霉素响应元件 Gibberellin response element TATC-box TATCCCA

图3

不同非生物胁迫下小麦幼苗叶和根中反转录转座子的甲基化程度比较分析 A: Fatima; B: Wis; C: Angela; D: Babara; m: marker; M: 甲基化条带; U: 去甲基化条带。"

图4

小麦幼苗叶和根中Fatima和Wis转座活性分析 M: marker; 1, 5: 盐胁迫; 2, 6: ABA胁迫; 3, 7: H2O2胁迫; 4, 8: 干旱胁迫。图中箭头指示新的转座插入位点, AA、AT、TT、CG、GG、AC、AG、CA、CT、GT、TC、TG、TA、CC、GC和GA分别表示扩增引物的最后2个碱基。"

图5

小麦幼苗叶和根中Angela和Babara转座活性分析 M: marker; 1, 5: 盐胁迫; 2, 6: ABA胁迫; 3, 7: H2O2胁迫; 4, 8: 干旱胁迫。图中箭头指示新的转座插入位点, AA、AT、TT、CG、GG、AC、AG、CA、CT、GT、TC、TG、TA、CC、GC和GA分别表示扩增引物的最后2个碱基。"

[1] Feschotte C, Jiang N, Wessler S R. Plant transposable elements: where genetics meets genomics. Nat Rev Genet, 2002, 3: 329-341.
doi: 10.1038/nrg793 pmid: 11988759
[2] Hou J, Lu D, Mason A S, Li B, Xiao M, An S, Fu D. Non-coding RNAs and transposable elements in plant genomes: emergence, regulatory mechanisms and roles in plant development and stress responses. Planta, 2019, 250: 23-40.
doi: 10.1007/s00425-019-03166-7 pmid: 30993403
[3] Ning J. Plant transposable Elements:Beyond Insertions and Interruptions. New York: Springer-Verlag, 2018.
[4] Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 2021, 49: 10431-10447.
doi: 10.1093/nar/gkab828
[5] Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González R H, De Oliveira R. International Wheat Genome Sequencing Consortium, Mayer Kfx, Paux E, Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol, 2018, 19: 103.
doi: 10.1186/s13059-018-1479-0 pmid: 30115100
[6] Alonge M, Shumate A, Puiu D, Zimin A V, Salzberg S L. Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies. Genetics, 2020, 216: 599-608.
doi: 10.1534/genetics.120.303501 pmid: 32796007
[7] Hirsch C D, Springer N M. Transposable element influences on gene expression in plants. Biochim Biophys Acta Gene Regul Mech, 2017, 1860: 157-165.
doi: 10.1016/j.bbagrm.2016.05.010
[8] Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems: a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol, 2015, 86: 90-109.
doi: 10.1016/j.ympev.2015.03.009
[9] Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M. The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci, 2021, 22: 11387.
doi: 10.3390/ijms222111387
[10] Galindo-González L, Sarmiento F, Quimbaya M A. Shaping plant adaptability, genome structure and gene expression through transposable element epigenetic control: focus on methylation. Agronomy, 2018, 8: 180.
doi: 10.3390/agronomy8090180
[11] Saze H. Epigenetic regulation of intragenic transposable elements: a two-edged sword. J Biochem, 2018, 164: 323-328.
doi: 10.1093/jb/mvy060 pmid: 30010918
[12] Yates-Stewart A D, Daron J, Wijeratne S, Shahid S, Edgington H A, Slotkin R K, Michel A. Soybean aphids adapted to host-plant resistance by down regulating putative effectors and up regulating transposable elements. Insect Biochem Mol Biol, 2020, 121: 103363.
doi: 10.1016/j.ibmb.2020.103363
[13] Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S. OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol, 2001, 42: 1345-1354.
doi: 10.1093/pcp/pce171 pmid: 11773527
[14] Woodrow P, Pontecorvo G, Fantaccione S, Fuggi A, Kafantaris I, Parisi D, Carillo P. Polymorphism of a new Ty1-copia retrotransposon in durum wheat under salt and light stresses. Theor Appl Genet, 2010, 121: 311-322.
doi: 10.1007/s00122-010-1311-z pmid: 20237753
[15] Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 2021, 49: 10431-10447.
doi: 10.1093/nar/gkab828
[16] Zhao Y, Wu L, Fu Q, Wang D, Li J, Yao B, Yu S, Jiang L, Qian J, Zhou X, Han L, Zhao S, Ma C, Zhang Y, Luo C, Dong Q, Li S, Zhang L, Jiang X, Li Y, Luo H, Li K, Yang J, Luo Q, Li L, Peng S, Huang H, Zuo Z, Liu C, Wang L, Li C, He X, Friml J, Du Y. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant Cell Environ, 2021, 44: 1846-1857.
doi: 10.1111/pce.14029
[17] Marcussen T, Sandve S R, Heier L, Spannagl M, Pfeifer M, International Wheat Genome Sequencing Consortium, Jakobsen K S, Wulff B B, Steuernagel B, Mayer K F, Olsen O A. Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, 345: 1250092.
doi: 10.1126/science.1250092
[18] 郭靖宇. 小麦中国春全基因组转座元件的特征分析. 河南大学硕士学位论文, 河南郑州, 2020.
Guo J Y. Genome-wide Analysis of Transposable Elements in Bread Wheat. MS Thesis of Henan University, Zhengzhou, Henan, China, 2020. (in Chinese with English abstract)
[19] Nian L L, Liu X L, Yang Y B, Zhu X L, Yi X F, Haider F U. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of LIM gene family in Medicago sativa L. PLoS One, 2021, 16: e0252213.
doi: 10.1371/journal.pone.0252213
[20] Mani B, Agarwal M, Katiyar-Agarwal S. Comprehensive expression profiling of rice Tetraspanin genes reveals diverse roles during development and abiotic stress. Front Plant Sci, 2015, 6: 1088.
doi: 10.3389/fpls.2015.01088 pmid: 26697042
[21] Zhou Y B, Li Y, Qi X L, Liu R B, Dong J H, Jing W H, Guo M M, Si Q L, Xu Z S, Li L C, Wang C S, Cheng X G, Ma Y Z, Chen M. Overexpression of V-type H+pyrophosphatase gene EdVP1 from Elymus dahuricus increases yield and potassium uptake of transgenic wheat under low potassium conditions. Sci Rep, 2020, 10: 5020.
doi: 10.1038/s41598-020-62052-5
[22] Mosoni P, Chaucheyras-Durand F, Béra-Maillet C, Forano E. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J Appl Microbiol, 2007, 103: 2676-2685.
pmid: 18045448
[23] Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012, 192: 763-774.
doi: 10.1534/genetics.112.146316 pmid: 23135324
[24] Mcclelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res, 1994, 22: 3640-3659.
pmid: 7937074
[25] Pan Y P, Bo K L, Cheng Z H, Weng Y Q. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR- retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol, 2015, 15: 302.
doi: 10.1186/s12870-015-0693-0
[26] Simpson S D, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J, 2003, 33: 259-270.
doi: 10.1046/j.1365-313x.2003.01624.x pmid: 12535340
[27] Hattori T, Terada T, Hamasuna S. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J, 1995, 7: 913-925.
pmid: 7599651
[28] Busk P K, Jensen A B, Pagès M. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J, 1997, 11: 1285-1295.
pmid: 9225468
[29] Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701-713.
doi: 10.1007/BF00029852 pmid: 8193295
[30] Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol, 2005, 57: 155-171.
doi: 10.1007/s11103-004-6910-0 pmid: 15821875
[31] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi- Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78.
doi: 10.1105/tpc.006130
[32] Hirochika H. Activation of tobacco retrotransposons during tissue culture. EMBO J, 1993, 12: 2521-2528.
doi: 10.1002/j.1460-2075.1993.tb05907.x pmid: 8389699
[33] Wendel J F, Wessler S R. Retrotransposon-mediated genome evolution on a local ecological scale. Proc Natl Acad Sci USA, 2000, 97: 6250-6252.
pmid: 10841529
[34] Aliyev A T, Lobianco F, Krager K J, Aykin-Burns N. Assessment of cellular oxidation using a subcellular compartment-specific redox-sensitive green fluorescent protein. J Vis Exp, 2020, 160: 10.3791/61229.
[35] Galindo-González L, Mhiri C, Deyholos M K, Grandbastien M A. LTR-retrotransposons in plants: engines of evolution. Gene, 2017, 626: 14-25.
doi: S0378-1119(17)30322-0 pmid: 28476688
[36] Georgiev S, Dekova T, Atanassov I, Angelova Z, Dimitrova A, Mirkova V, Stoilov L. Transposable elements in wheat and Triticale sphaerococcum mutant forms. Biotechnol Biotechnol Equip, 2000, 14: 25-32.
doi: 10.1080/13102818.2000.10819057
[37] Gu Y Q, Crossman C, Kong X, Luo M, You F M, Coleman-Derr D, Dubcovsky J, Anderson O D. Genomic organization of the complex α-gliadin gene loci in wheat. J Appl Genet, 2004, 109: 648-657.
[38] Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003, 33: 102-106.
doi: 10.1038/ng1063 pmid: 12483211
[39] Murphy G, Lucas H, Moore G, Flavell R. Sequence analysis of WIS-2-1A, a retrotransposon-like element from wheat. Plant Mol Biol, 1992, 20: 991-995.
doi: 10.1007/BF00027169 pmid: 1334439
[40] Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res, 2021, 49: 10431-10447.
doi: 10.1093/nar/gkab828
[41] Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J, 2001, 26: 307-316.
pmid: 11439119
[42] Gu Y Q, Crossman C, Kong X, Luo M, You F M, Coleman-Derr D, Dubcovsky J, Anderson O D. Genomic organization of the complex alpha-gliadin gene loci in wheat. Theor Appl Genet, 2004, 109: 648-657.
pmid: 15103408
[43] Li W, Zhang P, Fellers J P, Friebe B, Gill B S. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J, 2004, 40: 500-511.
doi: 10.1111/j.1365-313X.2004.02228.x
[44] Lee S C, Martienssen R A. Regulation of retrotransposition in Arabidopsis. Biochem Soc Trans, 2021, 49: 2241-2251.
doi: 10.1042/BST20210337
[45] Merkulov P, Omarov M, Gvaramiya S, Kirov I. Detection of active LTR retrotransposons via eccDNA analysis in Helianthus annuus L., Arabidopsis thaliana and triticale. In: Salina E A, ed. Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk, Russia: The 6th International Scientific Conference, 2021 (in Russian and English).
[1] 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196.
[2] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[3] 张晓, 陆成彬, 江伟, 张勇, 吕国锋, 吴宏亚, 王朝顺, 李曼, 吴素兰, 高德荣. 弱筋小麦育种品质选择指标及亲本组配原则[J]. 作物学报, 2023, 49(5): 1282-1291.
[4] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[5] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[6] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[7] 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916.
[8] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[9] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[10] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[11] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[12] 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686.
[13] 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413.
[14] 刘方方, 万映秀, 曹文昕, 李耀, 张琪琪, 李炎, 张平治. 小麦倒春寒抗性评价方法研究[J]. 作物学报, 2023, 49(2): 438-446.
[15] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .