欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1222-1230.doi: 10.3724/SP.J.1006.2023.24140

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生InDel标记开发及其在含油量QTL定位中的应用

陶顺玉(), 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳()   

  1. 中国农业科学院油料作物研究所/农业农村部遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2022-06-10 接受日期:2022-07-21 出版日期:2023-05-12 网络出版日期:2022-09-23
  • 通讯作者: *姜慧芳, E-mail: peanutlab@oilcrops.cn
  • 作者简介:E-mail: ynautsy@163.com
  • 基金资助:
    广东省重点领域研发计划项目(2020B020219003);国家自然科学基金项目(31801403);国家自然科学基金项目(31871666);农作物种质资源保护项目(2017NWB033);国家农作物种质资源共享服务平台(NICGR2017-36);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13-花生种质资源评价);中国农业科学院创新工程项目(2022-2060299-089-031)

Development and employment of InDel marker in peanut QTL mapping of oil content

TAO Shun-Yu(), WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2022-06-10 Accepted:2022-07-21 Published:2023-05-12 Published online:2022-09-23
  • Contact: *E-mail: peanutlab@oilcrops.cn
  • Supported by:
    Key Area Research and Development Program of Guangdong Province(2020B020219003);National Natural Science Foundation of China(31801403);National Natural Science Foundation of China(31871666);Crop Germplasm Resources Protection Project(2017NWB033);Plant Germplasm Resources Sharing Platform(NICGR2017-36);China Agriculture Research System of MOF and MARA(CARS13);Innovation Project of Chinese Academy of Agricultural Sciences(2022-2060299-089-031)

摘要:

培育高含油量品种是花生重要的育种目标, 开发稳定高效的分子标记对于标记辅助选择花生高含油量品种具有重要价值。本研究针对2个含油量差异显著的亲本徐花13 (高含油量)和中花6号(低含油量), 利用PacBio三代测序技术检测基因组结构变异, 分别从徐花13和中花6号中检测到35,794个和74,703个结构变异。根据双亲结构变异信息, 针对前期定位的含油量区间开发InDel (插入/缺失)标记84个, 其中9个InDel标记的扩增片段证实在双亲间具有多态性。基于RIL (重组自交系)群体中的杂合残余获得的NIL (近等基因系)构建的一个包含1160个单株的F2群体, 使用9个多态性InDel标记鉴定其基因型, 构建了总长度为149.84 cM的局部遗传连锁图谱。结合F2群体的含油量表型数据, 将该含油量QTL定位在标记M23至M11之间, 位于A08染色体1.2 Mb区段内。本试验证实了InDel标记开展花生含油量QTL定位的可行性, 其定位的含油量位点及其紧密连锁的InDel标记能够为花生分子标记辅助育种提供理论和技术指导。

关键词: 花生, 基因组测序, InDel, 含油量

Abstract:

The developing of stable and efficient molecular markers is of great value for marker-assisted selection of peanut varieties with high oil content. In this study, two parents with significant differences in oil content, Xuhua 13 (high oil content) and Zhonghua 6 (low oil content), were used to detect genomic structural variation by PacBio third-generation sequencing technology, and 35,794 and 74,703 structural variations were detected in Xuhua 13 and Zhonghua 6, respectively. 84 InDel markers in the target region were detected based on the parents’ structural variations and the previous QTL mapping information. And 9 InDel markers were found to be polymorphic between the parents. Meanwhile, F2 population with 1160 individual plants was constructed based on near isogenic lines (NILs) derived from heterozygous residuals in the recombined inbred line (RIL) population. The polymorphic markers were used to genotype the population and to construct the genetic linkage map with 149.84 cM. Combining with phenotype data of population for oil content, QTL (qOCA08) was fine mapped between marker M23 and marker M11, which was located on 1.2 Mb interval of chromosome A08. This study demonstrated the feasibility of InDel marker for peanut QTL mapping. The locus of oil content and closely linked InDel markers can provide the theoretical and technical guidance for peanut molecular marker-assisted breeding.

Key words: peanut, genome resequencing, InDel, oil content

表1

亲本测序信息"

样品
Sample name
碱基数目
Base number
Reads数
Clean reads
比对率
Mapping rate (%)
覆盖度
Coverage
(%)
结构变异
Structural variation
插入
Insertion
缺失
Deletion
徐花13 Xuhua 13 81,826,464,736 5,615,798 98.03 96.91 35,794 12,293 4496
中花6号 Zhonghua 6 68,494,830,848 4,225,186 97.58 96.59 74,703 26,833 12,906

图1

亲本中插入、缺失长度分布 A: 徐花13插入变异的长度分布; B: 徐花13缺失变异的长度分布; C: 中花6号插入变异的长度分布; D: 中花6号缺失变异的长度分布。"

图2

结构变异发生在基因组不同区域的比例 A: 徐花13的结构变异在基因组不同区域的比例; B: 中花6号的结构变异在基因组不同区域的比例。"

图3

亲本中9个多态性InDel标记PCR扩增结果"

表2

亲本中具有多态性的InDel标记信息"

引物名称
Primer name
引物序列
Primer sequences (5'-3')
引物位置(A08)
Physical position (A08) (bp)
差异大小
Difference in size (bp)
M9-F AGTATTGAAGCGGCAGGAGG 37,791,529 18
M9-R TTGCACTTCGATGTGGAGGAT
M21-F TAGTTCTCTCCGGATGCCTCA 42,578,036 26
M21-R TGCCATGAAATTACTCATTACTCTT
M6-F CAGAGAGACAGAGAGCGAGC 44,213,248 466
M6-R TGAGCCGGATGAGTAAGACA
M22-F AATAAGTTTGTTGGGAGAATGAAAT 44,339,712 24
M22-R GCTCCCATTGTCTAGCGAAAAC
M23-F TGCTGTGTGTAATAGTTAGAGGCT 44,988,232 28
M23-R TGGGGTGAGTGAATTATACGTGA
M11-F TGTGAGTACCGACATACACTCA 46,212,241 154
M11-R AATTTGATTATTGGACATCCCCT
M13-F GTTGAGACCGGAACACAGGA 46,400,655 362
M13-R CTATCCACTAGGTTCTCCAGCA
M14-F TGTCAATGTGTTATCATCTCAATTT 46,555,343 2353
M14-R TAATTGGCACCACGCAATGTC
M8-F CCAAGTCCTTTGCAGCTCTC 49,660,135 15
M8-R AAATTACTTTCAGTAAATGTCTAGC

图4

F2群体含油量表型的频率分布"

图5

F2群体定位结果"

图6

M11位点等位基因型含油量的表型效应 **代表在0.01概率水平著差异(t检验)。"

[1] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166. (in Chinese with English abstract)
[2] 张婧妤, 许本波, 郑家喜. 我国食用植物油消费变化分析及改革对策. 中国油脂, 2022, 47(3): 5-10.
Zhang J Y, Xu B B, Zheng J X. Analysis on consumption changes and reform countermeasures of edible vegetable oil in China. Chin Oils Fats, 2022, 47(3): 5-10 (in Chinese with English abstract).
[3] 姜慧芳, 任小平. 我国栽培种花生资源农艺和品质性状的遗传多样性. 中国油料作物学报, 2006, 28: 421-426.
Jiang H F, Ren X P. Genetic diversity of agronomic and quality traits in cultivated peanut resources in China. Chin J Oil Crop Sci, 2006, 28: 421-426. (in Chinese with English abstract)
[4] Yol E, Ustun R, Golukcu M, Uzun B. Oil content, oil yield and fatty acid profile of groundnut germplasm in Mediterranean climates. J Am Oil Chem Soc, 2017, 94: 787-804.
doi: 10.1007/s11746-017-2981-3
[5] 郭建斌, 吴贝, 陈伟刚, 贾朝阳, 荆建国, 陈四龙, 刘念, 陈玉宁, 周小静, 罗怀勇, 任小平, 姜慧芳, 黄莉. 基于核磁共振法的花生品种含油量遗传变异分析. 中国油料作物学报, 2017, 39: 326-333.
Guo J B, Wu B, Chen W G, Jia C Y, Jing J G, Chen S L, Liu N, Chen Y N, Zhou X J, Luo H Y, Ren X P, Jiang H F, Huang L. Variation of oil content in peanut varieties based on nuclear magnetic resonance technology. Chin J Oil Crop Sci, 2017, 39: 326-333. (in Chinese with English abstract)
[6] Bertioli D J, Cannon S B, Froenicke L, Huang G D, Farmer A D, Cannon E K S, Liu X, Gao D Y, Clevenger J, Dash S, Ren L H, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C G, Kozik A, Kim K D, Burow M D, Varshney R K, Wang X J, Zhang X Y, Barkley N, Guimarães P M, Isobe S, Guo B Z, Liao B S, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C M, Xun X, Jackson S A, Michelmore R, Ozias-Akins P. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016, 48: 438-446.
doi: 10.1038/ng.3517 pmid: 26901068
[7] Shasidhar Y, Vishwakarma M K, Pandey M K, Janila P, Variath M T, Manohar S S, Nigam S N, Guo B Z, Varshney R K. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci, 2017, 8: 794-807.
doi: 10.3389/fpls.2017.00794 pmid: 28588591
[8] Wilson J N, Chopra R, Baring M R, Selvaraj M G, Simpson C E, Chagoya J, Burow M D. Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Trop Plant Biol, 2017, 10: 512.
[9] Guo J B, Liu N, Li W T, Wu B, Chen H W, Huang L, Chen W G, Luo H Y, Zhou X J, Jiang H F. Identification of two major loci and linked marker for oil content in peanut (Arachis hypogaea L.). Euphytica, 2021, 217: 29.
doi: 10.1007/s10681-021-02765-4
[10] Väli U, Brandström M, Johansson M, Ellegren H. Insertion- deletion polymorphisms (indels) as genetic markers in natural populations. BMC Genet, 2008, 9: 8.
doi: 10.1186/1471-2156-9-8 pmid: 18211670
[11] Li X M, Gao W H, Guo H L, Zhang X L, Fang D D, Lin Z X. Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping. BMC Genom, 2014, 15: 1046.
doi: 10.1186/1471-2164-15-1046
[12] Weber J L, David D, Heil J, Fan Y, Zhao C F, Marth G. Human diallelic insertion/deletion polymorphisms science direct. Am J Hum Genet, 2002, 71: 854-862.
doi: 10.1086/342727 pmid: 12205564
[13] Liu J, Qu J T, Yang C, Tang D G, Li J W, Lan H, Rong T Z. Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC Genomics, 2015, 16: 601.
doi: 10.1186/s12864-015-1797-5 pmid: 26269146
[14] 刘栓桃, 张志刚, 司立英, 王荣花, 李巧云, 王立华, 赵智中, 梁水美, 张全芳, 步迅. 基于InDels标记的大白菜育种材料的亲缘关系鉴定. 植物遗传资源学报, 2018, 19: 657-667.
Liu S T, Zhang Z G, Si L Y, Wang R H, Li Q Y, Wang L H, Zhao Z Z, Liang S M, Zhang Q F, Bu X. Identification of genetic relationships of Chinese cabbage inbred lines using InDels markers. J Plant Genet Res, 2018, 19: 657-667 (in Chinese with English abstract).
[15] 孟雅宁, 严立斌, 田玉, 范妍芹. 利用重测序InDel位点开发甜椒隐性核不育分子标记. 分子植物育种, 2019, 17: 6041-6046.
Meng Y N, Yan L B, Tian Y, Fan Y Q. Development of recessive genic male sterile molecular markers in sweet pepper using resequencing InDel sites. Mol Plant Breed, 2019, 17: 6041-6046. (in Chinese with English abstract)
[16] 季高翔, 何守朴, 潘兆娥, 龚文芳, 贾银华, 王立如, 王朋朋, 耿晓丽, 杜雄明. 基于重测序开发的InDel标记定位陆地棉矮化突变体. 棉花学报, 2018, 30: 448-454.
Ji G X, He S P, Pan Z E, Gong W F, Jia Y H, Wang L R, Wang P P, Geng X L, Du X M. Localization of a dwarfing mutation in upland cotton using InDel markers based on genome re-sequencing data. Cotton Sci, 2018, 30: 448-454 (in Chinese with English abstract).
[17] Liu L F, Dang P M, Chen C Y. Development and utilization of InDel markers to identify peanut (Arachis hypogaea L.) disease resistance. Front Plant Sci, 2015, 6: 988-998.
[18] Meng S, Yang X L, Dang P M, Cui S L, Mu G J, Chen C, Liu L F. Evaluation of insertion-deletion markers suitable for genetic diversity studies and marker-trait correlation analyses in cultivated peanut (Arachis hypogaea L.). Genet Mol Res, 2016, 15: gmr.15038207.
[19] 郭建斌. 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B. QTL Analysis for Oil Content and Fatty Acid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[20] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[21] Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M. Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 2002, 129: 440-450.
doi: 10.1104/pp.003533 pmid: 12068090
[22] Mithra S V A, Kar M K, Mohapatra T, Robin S, Sarla N, Seshashayee M, Singh K, Singh A K, Singh N K, Sharma R P. DBT propelled national effort in creating mutant resource for functional genomics in rice. Curr Sci, 2016, 110: 543-548.
doi: 10.18520/cs/v110/i4/543-548
[23] 刘阳杰, 何美敬, 崔顺立, 杨鑫雷, 穆国俊, Chen C Y, 刘立峰. 美国花生种质资源果腐病抗性分子标记的筛选及分析. 农业生物技术学报, 2019, 27: 743-751.
Liu Y J, He M J, Cui S L, Yang X L, Mu G J, Chen C Y, Liu L F. Screening and analysis of molecular markers for pod rot resistance in American peanut (Arachis hypogaea L.) germplasm resources. Chin J Agric Biotechol, 2019, 27: 743-751. (in Chinese with English abstract)
[24] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发. 作物学报, 2021, 47: 2163-2172.
doi: 10.3724/SP.J.1006.2021.04236
Guo Q Q, Zhou R, Chen X, Chen L, Li J N, Wang R. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing. Acta Agron Sin, 2021, 47: 2163-2172. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04236
[25] 张胜忠, 焦坤, 胡晓辉, 苗华荣, 陈静. 花生百仁质量和含油量的遗传分析. 花生学报, 2018, 47(4): 7-12.
Zhang S Z, Jiao K, Hu X H, Miao H R, Chen J. Genetic analysis for seed mass and oil content of peanuts. J Peanut Sci, 2018, 47(4): 7-12. (in Chinese with English abstract)
[26] 黄莉, 赵新燕, 张文华, 樊志明, 任小平, 廖伯寿, 姜慧芳, 陈玉宁. 利用RIL群体和自然群体检测与花生含油量相关的SSR标记. 作物学报, 2011, 37: 1967-1974.
doi: 10.3724/SP.J.1006.2011.01967
Huang L, Zhao X Y, Zhang W H, Fan Z M, Ren X P, Liao B S, Jiang H F, Chen Y N. Identification of SSR markers linked to oil content in peanut (Arachis hypogaea L.) through RIL population and natural population. Acta Agron Sin, 2011, 37: 967-1974. (in Chinese with English abstract)
[27] Liu N, Huang L, Chen W G, Wu B, Pandey M K, Luo H Y, Zhou X J, Guo J B, Chen H W, Huai D X, Chen Y N, Lei Y, Liao B S, Ren X P, Varshney R K, Jiang H F. Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genet, 2020, 21: 60.
doi: 10.1186/s12863-020-00863-1 pmid: 32513099
[28] 徐平, 尹亮, 石延茂, 任艳, 王效华, 李双铃, 袁美. 一个与花生含油量相关的InDel标记的开发. 花生学报, 2017, 46(4): 1-6.
Xu P, Yin L, Shi Y M, Ren Y, Wang X H, Li S L, Yuan M. Identifying of InDel marker associated with oil content in peanut. J Peanut Sci, 2017, 46(4): 1-6. (in Chinese with English abstract)
[29] Liu N, Guo J B, Zhou X J, Wu B, Huang L, Luo H Y, Chen Y N, Chen W G, Lei Y, Huang Y, Liao B S, Jiang H F. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a -0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor App Genet, 2020, 133: 37-49.
doi: 10.1007/s00122-019-03438-6
[1] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015.
[2] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[3] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876.
[4] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
[5] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[6] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[7] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[8] 徐扬, 张智猛, 丁红, 秦斐斐, 张冠初, 戴良香. 钙肥对酸性红壤花生种子萌发及种子际微生物菌群结构的调控[J]. 作物学报, 2022, 48(8): 2088-2099.
[9] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[10] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[11] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[12] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[13] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[14] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[15] 陶亚军, 朱静妍, 王军, 范方军, 许扬, 李文奇, 王芳权, 陈智慧, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻氮高效基因分子标记开发与基因型筛选[J]. 作物学报, 2022, 48(12): 3045-3056.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .