欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1339-1349.doi: 10.3724/SP.J.1006.2023.22031

• 耕作栽培·生理生化 • 上一篇    下一篇

硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性

韦海敏1,2(), 陶伟科1,2, 周燕1,2, 闫飞宇1,2, 李伟玮1,2, 丁艳锋1,2, 刘正辉1,2, 李刚华1,2,*()   

  1. 1南京农业大学农业农村部作物生理生态与生产管理重点实验室, 江苏南京210095
    2南京农业大学江苏省现代作物生产协同创新中心, 江苏南京210095
  • 收稿日期:2022-05-13 接受日期:2022-10-10 出版日期:2023-05-12 网络出版日期:2022-11-15
  • 通讯作者: *李刚华, E-mail: lgh@njau.edu.cn
  • 作者简介:E-mail: 2018101014@njau.edu.cn
  • 基金资助:
    江苏省重点研发计划项目(BE2021361);江苏省重点研发计划项目(BE2019377)

Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance

WEI Hai-Min1,2(), TAO Wei-Ke1,2, ZHOU Yan1,2, YAN Fei-Yu1,2, LI Wei-Wei1,2, DING Yan-Feng1,2, LIU Zheng-Hui1,2, LI Gang-Hua1,2,*()   

  1. 1Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
  • Received:2022-05-13 Accepted:2022-10-10 Published:2023-05-12 Published online:2022-11-15
  • Contact: *E-mail: lgh@njau.edu.cn
  • Supported by:
    Key Research and Development Program of Jiangsu Province(BE2021361);Key Research and Development Program of Jiangsu Province(BE2019377)

摘要:

本研究旨在阐明硅素穗肥调控盐碱地水稻抽穗期矿质元素分配的作用机制。以常规粳稻淮稻5号为材料, 于2019年和2020年在江苏沿海大丰盐碱地(盐分3.4 g kg-1, pH 8.3)开展大田试验, 设置3个硅肥用量(0、60和100 kg hm-2), 于幼穗分化期随穗肥施入。结果表明: (1) 硅素穗肥促进抽穗期植株养分吸收, 提高成熟期干物质量和产量, 与Si0相比, Si60平均增产4.3%, Si100平均增产8.6%; (2) 硅素穗肥优化了水稻不同部位K+、Na+分配, 提高水稻叶片、上部叶鞘、中下部茎秆K+含量, 降低穗、上部叶片、叶鞘、茎秆Na+含量, 提高各部位的K+/Na+, 进而提高离子稳态; (3) 硅素穗肥促进叶片大量元素N、P、Ca、Mg和微量元素Fe、Mn的积累, 与Si0相比, 硅素穗肥显著提高了16.5%的P含量、18.5%的Mg含量、22.4%的Ca含量、19.8%的Fe含量, 缓解盐碱胁迫对水稻叶片的不利影响。综上所述, 硅素穗肥优化了盐碱胁迫下水稻矿质元素的吸收分配, 减轻幼嫩器官盐胁迫程度, 促进叶片多种有益元素积累, 促进水稻养分吸收, 且100 kg hm-2效果最佳。

关键词: 水稻, 盐碱地, 硅肥, 矿质营养, 产量

Abstract:

This purpose of this study is to elucidate the mechanism of silicon fertilizer on mineral element distribution at heading stage in rice. In this study, a field experiment was carried out in the coastal beach saline-alkali of Jiangsu Province (3.4 g kg-1 soil salinity, pH 8.3). The conventional japonica rice (Huaidao 5) was used as the material, and three silicon fertilizer amounts (0, 60 and 100 kg hm-2) were applied with panicle fertilizer at panicle initiation stage. The results showed that: (1) Silicon panicle fertilizer promoted plant nutrient absorption at heading stage, increased dry matter accumulation at mature stage, and increased yield, Si60 increased by 4.3% on average, Si100 increased by 8.6% on average. (2) Silicon panicle fertilizer optimized the distribution of K+ and Na+ in rice at heading stage. Silicon increase K+ content in leaves, upper sheaths and lower stems of rice, decreased Na+ content in panicles, upper leaves, sheaths and stems, and increased the K+/Na+ ratio in various tissues, thus improving ion homeostasis of rice. (3) Silicon panicle fertilizer promoted the accumulation of N, P, Ca, Mg, Fe, and Mn in leaves. Compare with Si0, the average increase of the two silicon treatments was 16.5% in P, 18.5% in Mg, 22.4% in Ca and 19.8% in Fe, and alleviated the adverse effects of saline-alkali stress on rice leaves. In summary, silicon panicle fertilizer optimizes the absorption and distribution of mineral elements in rice, reduced salt stress in young organs, promoted the accumulation of beneficial elements in leaves, improved nutrient absorption of rice, and the effect of 100 kg hm?2 was better.

Key words: rice, saline-alkali stress, silicon, mineral elements, rice yield

图1

硅素穗肥对盐碱地水稻干物质量和产量的影响 A、B: 干物质量; C、D: 水稻产量。数据代表平均值±标准差, n = 3。不同的字母表示根据Duncan’s多重比较得出的不同处理间的差异显著(P < 0.05)。"

图2

硅素穗肥对盐碱地水稻不同器官钾离子含量的影响 不同器官(A、B)、叶片(C、F)、叶鞘(D、G)、茎秆(E、H)钾离子含量。数据代表平均值±标准差, n = 3。在同一器官, 不同的字母表示根据Duncan’s多重比较得出的不同处理间的差异显著(P < 0.05)。"

图3

硅素穗肥对盐碱地水稻不同器官钠离子含量的影响 处理同图2。数据代表平均值±标准差, n = 3。在同一器官, 不同的字母表示根据Duncan’s多重比较得出的不同处理间的差异显著(P < 0.05)。"

图4

硅素穗肥对盐碱地水稻不同器官钾钠比值的影响 处理同图2。数据代表平均值±标准差, n = 3。在同一器官, 不同的字母表示根据Duncan’s多重比较得出的不同处理间的差异显著(P < 0.05)。"

图5

硅素穗肥对盐碱地水稻不同器官氮、磷、钙、镁含量的影响 不同器官氮含量(A、B)、磷含量(C、D)、钙含量(E、F)、镁含量(G、H)。数据代表平均值±标准差, n = 3。在同一器官, 不同的字母表示根据Duncan’s多重比较得出的不同处理间的差异显著(P < 0.05)。"

图6

硅素穗肥对盐碱地水稻不同器官铁、锰、锌、铜含量的影响 不同器官铁含量(A、B)、锰含量(C、D)、锌含量(E、F)、铜含量(G、H)。数据代表平均值±标准差, n = 3。在同一器官, 不同的字母表示根据Duncan’s多重比较得出的不同处理间的差异显著(P < 0.05)。"

图7

硅素穗肥对盐碱地水稻矿质元素分配影响示意图 A: 盐胁迫; B: 盐胁迫+硅肥。图片展示了K+、Na+在不同叶片的分配比例, 不同器官矿质元素显著的含量变化。叶片颜色越深表示Na+含量越高, 叶片颜色越浅表示K+/Na+越高, 盐胁迫程度越低。"

[1] FAOSTAT.https://www.fao.org/faostat/en/#data, 2021-06-05.
[2] Julkowska M J M M, Testerink C T C. Tuning plant signaling and growth to survive salt. Trends Plant Sci, 2015, 20: 586-594.
doi: 10.1016/j.tplants.2015.06.008 pmid: 26205171
[3] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响. 作物学报, 2021, 47: 2471-2480.
doi: 10.3724/SP.J.1006.2021.02083
Wei H H, Zhang X B, Ge J L, Chen X, Meng T Y, Yang Y, Xiong F, Chen Y L, Dai Q G. Effects of salinity stress on spikelets formation and grains filling in rice (Oryza sativa L.). Acta Agron Sin, 2021, 47: 2471-2480. (in Chinese with English abstract)
[4] 凌启鸿. 盐碱地种稻有关问题的讨论. 中国稻米, 2018, 24(4): 1-2.
doi: 10.3969/j.issn.1006-8082.2018.04.001
Ling Q H. Discussion on the related problems of rice planting in saline-alkali soil. China Rice, 2018, 24(4): 1-2. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2018.04.001
[5] Ling F L, Su Q W, Jiang H, Cui J J, He X L, Wu Z H, Zhang Z A, Liu J, Zhao Y J. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci Rep, 2020, 10: 6183.
doi: 10.1038/s41598-020-63352-6 pmid: 32277136
[6] Khatun S, Rizzo C A, Flowers T J. Genotypic variation in the effect of salinity on fertility in rice. Plant Soil, 1995, 173: 239-250.
doi: 10.1007/BF00011461
[7] Devidas Wankhade S, Cornejo M, Mateu-Andres I, Sanz A. Morpho-physiological variations in response to NaCl stress during vegetative and reproductive development of rice. Acta Physiol Plant, 2013, 35: 323-333.
doi: 10.1007/s11738-012-1075-y
[8] Flam-Shepherd R, Huynh W Q, Coskun D, Hamam A M, Britto D T, Kronzucker H J. Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. J Exp Bot, 2018, 69: 1679-1692.
doi: 10.1093/jxb/erx460 pmid: 29342282
[9] Sairam R K, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci India, 2004, 86: 407-421.
[10] Shelden M C, Gilbert S E, Tyerman S D. A laser ablation technique maps differences in elemental composition in roots of two barley cultivars subjected to salinity stress. Plant J, 2020, 101: 1462-1473.
doi: 10.1111/tpj.14599
[11] Etesami H, Jeong B R. Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotox Environ Safe, 2018, 147: 881-896.
doi: S0147-6513(17)30661-9 pmid: 28968941
[12] Thorne S J, Hartley S E, Maathuis F J M. Is silicon a panacea for alleviating drought and salt stress in crops? Front Plant Sci, 2020, 11: 1221.
doi: 10.3389/fpls.2020.01221 pmid: 32973824
[13] Emam M M, Khattab E H, Helal M N, Deraz E A. Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Aust J Crop Sci, 2014, 8: 596-605.
[14] Gunes A, Kadioglu Y K, Pilbeam D J, Inal A, Coban S, Aksu A. Influence of silicon on sunflower cultivars under drought stress, II: Essential and nonessential element uptake determined by polarized energy dispersive X-ray fluorescence. Commun Soil Sci Plan, 2008, 39: 1904-1927.
doi: 10.1080/00103620802134719
[15] Wasti S, Manaa A, Mimouni H, Nsairi A, Ibtissem M, Gharbi E, Gautier H, Ben Ahmed H. Exogenous application of calcium silicate improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. J Plant Nutr, 2017, 40: 673-684.
doi: 10.1080/01904167.2016.1250908
[16] Xu C X, Ma Y P, Liu Y L. Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. South Afr J Bot, 2015, 98: 26-36.
doi: 10.1016/j.sajb.2015.01.008
[17] Sun L, Wu L H, Ding T P, Tian S H. Silicon isotope fractionation in rice plants, an experimental study on rice growth under hydroponic conditions. Plant Soil, 2008, 304: 291-300.
doi: 10.1007/s11104-008-9552-1
[18] Ma J F, Nishimura K, Takahashi E. Effect of silicon on the growth of rice plant at different growth-stages. Soil Sci Plant Nutr, 1989, 35: 347-356.
doi: 10.1080/00380768.1989.10434768
[19] Zhu Y X, Gong H J, Yin J L. Role of silicon in mediating salt tolerance in plants: a review. Plants (Basel), 2019, 8: 147.
doi: 10.3390/plants8060147
[20] Yan G, Fan X, Tan L, Yin C, Li T, Liang Y. Root silicon deposition and its resultant reduction of sodium bypass flow is modulated by OsLsi1 and OsLsi2 in rice. Plant Physiol Biochem, 2021, 158: 219-227.
doi: 10.1016/j.plaphy.2020.11.015
[21] Gong H J, Randall D P, Flowers T J. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ, 2006, 29: 1970-1979.
pmid: 16930322
[22] Yan G C, Fan X P, Zheng W N, Gao Z X, Yin C, Li T Q, Liang Y C. Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa L.). J Plant Physiol, 2021, 258: 153379.
[23] Coskun D, Britto D T, Huynh W Q, Kronzucker H J. The role of silicon in higher plants under salinity and drought stress. Front Plant Sci, 2016, 7: 1072.
doi: 10.3389/fpls.2016.01072 pmid: 27486474
[24] Bosnic P, Bosnic D, Jasnic J, Nikolic M. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ Exp Bot, 2018, 155: 681-687.
doi: 10.1016/j.envexpbot.2018.08.018
[25] Wang H, Zhang M, Guo R, Shi D, Liu B, Lin X, Yang C. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol, 2012, 12: 194.
doi: 10.1186/1471-2229-12-194
[26] Niu X M, Bressan R A, Hasegawa P M, Pardo J M. Ion homeostasis in NaCl stress environments. Plant Physiol, 1995, 109: 735-742.
doi: 10.1104/pp.109.3.735 pmid: 12228628
[27] Jumberi A, Yamada M, Yamada S, Fujiyama H. Salt tolerance of grain crops in relation to ionic balance and ability to absorb microelements. Soil Sci Plant Nutr, 2001, 47: 657-664.
doi: 10.1080/00380768.2001.10408430
[28] Farshidi M, Abdolzadeh A, Sadeghipour H R. Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiol Plant, 2012, 34: 1779-1788.
doi: 10.1007/s11738-012-0975-1
[29] Kafi M, Rahimi Z. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Sci Plant Nutr, 2011, 57: 341-347.
doi: 10.1080/00380768.2011.567398
[30] Javaid T, Farooq M A, Akhtar J, Saqib Z A, Anwar-Ul-Haq M. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl- and mineral ions. Plant Physiol Biochem, 2019, 141: 291-299.
doi: 10.1016/j.plaphy.2019.06.010
[31] Horuz A, Korkmaz A. The effect of silicon fertilization on reducing salt stress in rice (Oryza sativa L.). J Agric Sci, 2014, 20: 215-229.
[32] Avestan S, Ghasemnezhad M, Esfahani M, Barker A V. Effects of nano silicon dioxide on leaf anatomy, chlorophyll fluorescence, and mineral element composition of strawberry under salinity stress. J Plant Nutr, 2021, 44: 3005-3019.
doi: 10.1080/01904167.2021.1936036
[33] Tuna A L, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin A R. Silicon improves salinity tolerance in wheat plants. Environ Exp Bot, 2007, 62: 10-16.
doi: 10.1016/j.envexpbot.2007.06.006
[34] Abdullah Z, Khan M A, Flowers T J. Causes of sterility in seed set of rice under salinity stress. J Agron Crop Sci, 2001, 187: 25-32.
doi: 10.1046/j.1439-037X.2001.00500.x
[35] Huang Y, Zhang W, Zhao L, Cao H. Effects of Si on the index of root activity, MDA content and nutritional elements uptake of rice under salt stress. Asian J Ecotox, 2009, 4: 860-866.
[36] Yang J C, Zhang J H. Grain filling of cereals under soil drying. New Phytol, 2006, 169: 223-236.
doi: 10.1111/j.1469-8137.2005.01597.x pmid: 16411926
[1] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[2] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[3] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642.
[4] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[5] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[6] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[7] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689.
[8] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[9] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[10] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
[11] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[12] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248.
[13] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[14] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[15] 吴香奇, 刘博, 张威, 杨雪妮, 郭子艳, 刘铁宁, 张旭东, 韩清芳. 小麦豌豆间作对群体光合特性和生产力的影响[J]. 作物学报, 2023, 49(4): 1079-1089.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .