欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1906-1918.doi: 10.3724/SP.J.1006.2023.21042

• 耕作栽培·生理生化 • 上一篇    下一篇

我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响

张露露1(), 张学美1, 牟文燕1, 黄宁1, 郭子糠1, 罗一诺1, 魏蕾1, 孙利谦1, 王星舒1, 石美1,*(), 王朝辉1,2,*()   

  1. 1西北农林科技大学资源环境学院 / 农业农村部西北植物营养与农业环境重点实验室, 陕西杨凌 712100
    2西北农林科技大学 / 旱区作物逆境生物学国家重点实验室, 陕西杨凌 712100
  • 收稿日期:2022-06-14 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2022-12-26
  • 通讯作者: *石美, E-mail: meishi@nwafu.edu.cn; 王朝辉, E-mail: w-zhaohui@263.net
  • 作者简介:E-mail: zhanglulusun@163.com
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-3);国家重点研发计划项目(2021YFD1900700);国家重点研发计划项目(2018YFD0200400)

Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors

ZHANG Lu-Lu1(), ZHANG Xue-Mei1, MU Wen-Yan1, HUANG Ning1, GUO Zi-Kang1, LUO Yi-Nuo1, WEI Lei1, SUN Li-Qian1, WANG Xing-Shu1, SHI Mei1,*(), WANG Zhao-Hui1,2,*()   

  1. 1College of Natural Resources and Environment, Northwest A&F University / Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
    2Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi, China
  • Received:2022-06-14 Accepted:2022-11-25 Published:2023-07-12 Published online:2022-12-26
  • Contact: *E-mail: meishi@nwafu.edu.cn; E-mail: w-zhaohui@263.net
  • Supported by:
    The China Agriculture Research System of MOF and MARA(CARS-3);The National Key Research and Development Program of China(2021YFD1900700);The National Key Research and Development Program of China(2018YFD0200400)

摘要:

为明确影响小麦锰营养的品种和土壤因素, 优化小麦锰营养, 实现小麦丰产优质生产提供理论依据, 于2016—2020年西北旱作小麦区(旱作区)以及黄淮小麦玉米轮作区(麦玉区)、南方水稻小麦轮作区(稻麦区) 3个麦区13个省份38个试验点开展试验, 测定了小麦产量、产量构成因素、籽粒锰含量以及土壤有效锰、pH等指标。结果表明, 小麦产量为麦玉区>稻麦区>旱作区, 平均为8.1、5.9和5.9 t hm-2; 小麦籽粒锰含量为稻麦区>旱作区>麦玉区, 平均为46.9、45.4和41.4 mg kg-1。小麦品种籽粒锰含量与干物质累积分配、产量构成因素及锰吸收利用之间的关系因麦区而异。旱作区小麦品种籽粒锰含量与产量、生物量、收获指数均显著负相关, 麦玉区与产量和收获指数显著负相关, 稻麦区无相关。旱作区籽粒锰含量与穗数及穗粒数显著负相关; 麦玉区与穗数显著负相关; 稻麦区与穗数显著正相关, 而与千粒重显著负相关。麦玉区和稻麦区籽粒锰含量均与地上部锰吸收量和籽粒吸锰量显著正相关, 旱作区籽粒锰含量与籽粒吸锰量显著正相关; 稻麦区籽粒锰含量与锰收获指数显著负相关, 旱作区和麦玉区两者显著正相关。影响小麦籽粒锰含量的主要土壤因素包括土壤全氮、pH、有效铁、有效锰和有效铜。麦玉区, 小麦籽粒锰含量与土壤有效铁、有效铜和有效锰显著正相关, 与土壤pH显著负相关; 稻麦区小麦籽粒锰含量与土壤pH、有效铜和全氮显著负相关, 而与土壤有效锰无显著相关。旱作区, 土壤有效磷和速效钾是影响小麦籽粒锰含量的主要原因。可见, 我国稻麦区小麦品种籽粒锰含量较高, 较低的土壤pH、全氮和较高的土壤有效铁、有效锰有利于籽粒锰含量提高, 土壤有效铜对籽粒锰含量的影响因麦区而异。产量对锰含量存在稀释效应, 通过提高穗数、穗粒数、千粒重有利于降低小麦籽粒锰含量。

关键词: 小麦, 锰含量, 产量, 品种, 土壤

Abstract:

It is of great significance to clarify the effects of cultivars and soil factors on wheat manganese nutrition for optimizing wheat manganese nutrition and achieving high yield and high-quality wheat production. From 2016 to 2020, a field experiment was carried out at 38 test sites in 13 provinces in three wheat production regions: Northwest dry-farming wheat area (DW), Huanghuai wheat-maize rotation area (WM), and Southern rice-wheat rotation area (RW). Wheat yield, yield components, grain Mn concentration, soil available manganese, pH value, and other indicators were tested. Results showed that, wheat yield was in the following order: WM > RW > DW, with the average value of 8.1, 5.9, and 5.9 t hm-2, respectively. Mn concentration in wheat grains was in the following order: RW > DW > WM, with the average value of 46.9, 45.4, and 41.4 mg kg-1, respectively. In different wheat production regions, the relationships of grain Mn concentration with the dry matter accumulation distribution, yield components, Mn uptake, and the utilization of wheat cultivars were different. The correlation of grain Mn concentration was significantly negative with the yield, biomass, and harvest index of wheat cultivars in DW, and was significantly negative with yield and harvest index in WM, but not significant in RW. There was a significant negative correlation between wheat grain Mn content and soil pH value, available Cu, and the total N, but not significant correlation between wheat grain Mn content and soil available Mn. Grain Mn concentration was positively correlated with spike number, but significantly negative with 1000-grain weight in RW. Grain Mn concentration was positively correlated with Mn uptake in shoots and Mn uptake in grains in WM and RW, and only positively correlated with Mn uptake in grains in DW, while its correlation with Mn harvest index was significantly negative in RW but positive in DW and WM. The main soil factors affecting wheat grain Mn concentration included soil total nitrogen, pH value, available Fe, available Mn, and available Cu. In WM, the grain Mn concentration was significantly positively correlated with soil available Fe, available Cu and Mn, but negatively correlated with soil pH. In RW, grain Mn concentration was significantly and negatively correlated with soil pH value, available Cu, and the total nitrogen, but not correlated with soil available Mn. Soil available P and available K were the main factors affecting grain Mn concentration in DW. In conclusion, wheat cultivars in RW of China had higher grain Mn concentration. Lower soil pH value, the total nitrogen, and the higher soil available Fe and Mn were beneficial to the increase of grain Mn concentration, while the effects of soil available Cu on grain Mn concentration varied with wheat regions. The yield had a dilution effect on Mn concentration, and the increase of spike number, grain number per spike, and 1000-grain weight were beneficial to the decrease of Mn content in wheat cultivars.

Key words: wheat, Mn concentration, grain yield, cultivar, soil

表1

旱作区、麦玉区、稻麦区各试验点0~20 cm土壤基本理化性状平均值"

麦区
Wheat region
有效养分 Available nutrient (mg kg-1) pH OM
(g kg-1)
TN
(g kg-1)
NO3--N NH4+-N AP AK Fe Mn Cu Zn
旱作区DW 10.7 0.2 11.8 151 5.0 10.9 1.02 0.37 8.2 16.8 0.84
稻麦区RW 18.4 11.9 28.5 164 53.4 23.3 2.96 1.45 6.3 29.4 1.48
麦玉区WM 20.7 7.3 37.3 192 11.9 14.5 1.33 1.56 7.7 22.8 1.13
全国ALL 16.6 6.5 25.9 169 23.4 16.2 1.77 1.13 7.4 23.0 1.15

表2

旱作区、麦玉区、稻麦区各年份平均施肥量"

施肥年份
Fertilizer application year
旱作区DW 麦玉区MW 稻麦区RW
氮肥
NF
磷肥
PF
钾肥
KF
氮肥
NF
磷肥
PF
钾肥
KF
氮肥
NF
磷肥
PF
钾肥
KF
2017 249±78.0 127±52.9 75±33.6 213±40.9 96±24.8 88±22.9
2018 180 100 75 238±60.8 130±34.5 73±36.8 187±78.0 80±36.8 70±32.6
2019 180 100 75 257±105 123±42.3 71±42.4 169±75.7 75±27.3 74±27.5
2020 180 100 75 262±55.5 145±48.8 93±71.7 183±64.7 75±39.0 65±33.6

图1

我国主要麦区主栽小麦品种产量的频率分布 图中使用数据为品种平均值, 柱形图内数字为样本数, 柱形图上数字为产量等级下产量平均值。"

图2

我国主要麦区主栽小麦品种籽粒锰含量的频率分布 图中使用数据为品种平均值, 柱形图内数字为样本数, 柱形图上数字为该锰含量等级下的平均值。"

图3

我国主要麦区主栽小麦品种籽粒锰含量与产量构成及锰吸收分配的关系 a中相关分析及线性回归分析使用数据为标准化数据, b中相关分析及线性回归分析使用数据为原始数据(参考使用)。纵坐标(y)为籽粒锰含量, 横坐标(x)分别为产量(GrY)、生物量(Bm)、收获指数(HI)、穗数(×104) (SpN)、穗粒数(GrN)、千粒重(TGW)、地上部锰吸收量(ShMnU)、籽粒吸锰量(GrMnU)及锰收获指数(MnHI); 红色代表正相关, 蓝色代表负相关, 其中颜色越深、椭圆形越窄代表相关系数越大; **: P < 0.01; *: 0.01 < P < 0.05。"

表3

我国主要麦区主栽小麦品种籽粒锰含量、产量、生物量、产量构成、锰吸收量及锰收获指数平均值"

指标
Index
旱作区DW 麦玉区WM 稻麦区RW 全国ALL
≤48.7 >48.7 ≤48.7 >48.7 ≤48.7 >48.7 ≤48.7 >48.7
籽粒锰 Grain Mn (mg kg-1) 44.2 50.8 40.5 51.8 42.2 52.1 42.1 51.5
产量 Yield (t hm-2) 5.9 5.8 8.2 7.5** 6.0 5.8 7.1 6.1**
生物量 Biomass (t hm-2) 13.3 13.4 17.9 17.0 13.4 12.7 15.7 13.9**
收获指数 Harvest index (%) 45.0 43.7 46.1 44.7 45.6 46.0 45.6 44.8
穗数 Spike number (×104 hm-2) 480.4 500.2 648.6 564.8** 385.5 417.4 559.2 480.4**
穗粒数 Grain number per spike (No. spike-1) 28.9 27.3 31.7 33.2 38.4 37.8 31.2 32.6
千粒重 Thousand-grain weight (g) 44.9 44.7 41.7 41.5 43.4 39.3** 43.1 41.9*
锰地上部吸收量 Shoot Mn uptake (g hm-2) 734.5 767.9 812.1 974.8** 708.0 894.7** 772.5 858.0**
籽粒吸锰量 Grain Mn uptake (g hm-2) 273.6 277.4 330.2 391.4** 250.6 291.5** 301.0 302.2
锰收获指数 Mn harvest index (%) 40.3 39.4 44.6 47.2 42.1 38.2* 42.7 40.5**

图4

我国主要麦区主栽小麦品种籽粒锰含量和锰吸收利用土壤相关因子的主成分分析 因旱作区地点较少, 无法进行方差分析; WM: 麦玉区; RW: 稻麦区; GMn: 籽粒锰含量; TN: 土壤全氮; NO3--N: 土壤硝态氮; NH4+-N: 土壤铵态氮; OM: 土壤有机质; K: 土壤速效钾; P: 土壤速效磷; Fe: 土壤有效铁; Mn: 土壤有效锰; Cu: 土壤有效铜; Zn: 土壤有效锌。主成分分析使用标准化数据, 多元线性回归方程使用原始数据, 图中数值为与籽粒锰含量相关显著(P < 0.05)的相关系数; 显著正相关以长划线表示, 显著负相关以短划线表示。为保持结果可比性, 两个地区均选择土壤全氮、pH、Mn、Cu、Fe与籽粒锰进行多元线性回归分析, 得到方程。方程中: y代表籽粒锰含量, x1、x2、x3、x4和x5分别代表土壤pH、有效铁、有效锰、有效铜和全氮。"

图5

我国主要麦区土壤相关指标平均值 DW: 旱作区; WM: 麦玉区; RW: 稻麦区; GMn: 籽粒锰含量; TN: 土壤全氮; AK: 土壤速效钾; AP: 土壤速效磷; Fe: 土壤有效铁; Mn: 土壤有效锰; Cu: 土壤有效铜。"

[1] 吴茂江. 锰与人体健康. 微量元素与健康研究, 2007, 24(6): 69-70.
Wu M J. Manganese and human health. Stud Trace Elements Heal, 2007, 24(6): 69-70. (in Chinese)
[2] Critchfield J W, Carl G F, Keen C L. The influence of manganese supplementation on seizure onset and severity, and brain monoamines in the genetically epilepsy prone rat. Epil Res, 1993, 14: 3-10.
doi: 10.1016/0920-1211(93)90069-J
[3] Erikson K M, Syversen T, Aschner J L, Aschner M. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharm, 2005, 19: 415-421.
doi: 10.1016/j.etap.2004.12.053
[4] Calne D B, Chu N S, Huang C C, Lu C S, Olanow W. Manganism and idiopathic parkinsonism: similarities and differences. Neurology, 1994, 44: 1583-1586.
pmid: 7936278
[5] Eshak E S, Muraki I, Imano H, Yamagishi K, Iso H. Manganese intake from foods and beverages is associated with a reduced risk of type 2 diabetes. Maturitas, 2021, 143: 127-131.
doi: 10.1016/j.maturitas.2020.10.009 pmid: 33308618
[6] Shi M, Hou S B, Sun Y Y, Dang H Y, Song Q Y, Jiang L G, Cao W, Wang H L, He X H, Wang Z H. Regional wheat grain manganese and its potential risks affected by soil pH and precipitation. J Clean Prod, 2020, 264: 121677.
doi: 10.1016/j.jclepro.2020.121677
[7] 褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价. 作物学报, 2022, 48: 2853-2867.
doi: 10.3724/SP.J.1006.2022.11099
Chu H X, Mu W Y, Dang H Y, Wang T, Sun R Q, Hou S B, Huang T M, Huang Q N, Shi M, Wang Z H. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China. Acta Agron Sin, 2022, 48: 2853-2867. (in Chinese with English abstract)
[8] 王浩琳, 马悦, 李永华, 李超, 赵明琴, 苑爱静, 邱炜红, 何刚, 石美, 王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理. 中国农业科学, 2022, 55: 1800-1810.
doi: 10.3864/j.issn.0578-1752.2022.09.009
Wang H L, Ma Y, Li Y H, Li C, Zhao M Q, Yuan A J, Qiu W H, He G, Shi M, Wang Z H. Optimal management of phosphorus fertilization based on the yield and grain manganese concentration of wheat. Sci Agric Sin, 2022, 55: 1800-1810. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.09.009
[9] 姜丽娜, 蒿宝珍, 张黛静, 邵云, 李春喜. 小麦籽粒Zn、Fe、Mn、Cu含量的基因型和环境差异及与产量关系的研究. 中国生态农业学报, 2010, 18: 982-987.
Jiang L N, Hao B Z, Zhang D J, Shao Y, Li C X. Genotypic and environmental differences in grain contents of Zn, Fe, Mn and Cu and how they relate to wheat yield. Chin J Eco-Agric, 2010, 18: 982-987. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00982
[10] 党红凯, 李瑞奇, 孙亚辉, 张馨文, 孟建, 刘红彬, 李雁鸣. 超高产栽培条件下冬小麦对锰的吸收、积累和分配. 植物营养与肥料学报, 2010, 16: 575-583.
Dang H K, Li R Q, Sun Y H, Zhang X W, Meng J, Liu H B, Li Y M. Absorption, accumulation and distribution of manganese in winter wheat cultivated under super-high-yielding conditions. Plant Nutr Fert Sci, 2010, 16: 575-583. (in Chinese with English abstract)
[11] Shaukat M, Sun M J, Ali M, Mahmood T, Naseer S, Maqbool S, Rehman S, Mahmood Z, Hao Y F, Xia X C, Rasheed A. Genetic gain for grain micronutrients and their association with phenology in historical wheat cultivars released between 1911 and 2016 in Pakistan. Agronomy, 2021, 11, 1247.
doi: 10.3390/agronomy11061247
[12] 王树亮.不同小麦品种对矿质元素吸收利用差异及农艺性状演变趋势. 山东农业大学硕士学位论文, 山东泰安, 2008.
Wang S L. The Difference in Absorption and Utilization of Mineral Elements of Different Wheat Varieties and Evolution Tendency of Agronomic Characters. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2008. (in Chinese with English abstract)
[13] 曾建国, 李廷亮, 文涛, 王伟华, 左玉环, 李佳. 叶面喷施锰对春小麦生长及锰吸收转移的影响. 灌溉排水学报, 2017, 36: 25-29.
Zeng J G, Li T L, Wen T, Wang W H, Zuo Y H, Li J. Effects of foliar spraying of manganese on growth and manganese absorption and transfer of spring wheat. J Irrig Drain, 2017, 36: 25-29. (in Chinese with English abstract)
[14] 刘娜, 王彬, 张琪, 王嵘嵘, 韩美坤, 王志敏, 张英华. 北京地区不同年代冬小麦品种籽粒微量元素含量的变化及其对水分的响应. 麦类作物学报, 2013, 33: 800-805.
Liu N, Wang B, Zhang Q, Wang R R, Han M K, Wang Z M, Zhang Y H. Change of micronutrient concentration during cultivar evolution of winter wheat in Beijing area and their responses to water. J Triticeae Crops, 2013, 33: 800-805. (in Chinese)
[15] Fan M S, Zhao F J, Fairweather-Tait S J, Poulton P R, Dunham S J, McGrath S P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elements Med Biol, 2008, 22: 315-324.
doi: 10.1016/j.jtemb.2008.07.002
[16] Hejcman M, Berkova M, Kunzova E. Effect of long-term fertilizer application on yield and concentrations of elements (N, P, K, Ca, Mg, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn) in grain of spring barley. Plant Soil Environ, 2013, 59: 329-334.
doi: 10.17221/159/2013-PSE
[17] Calderini D F, Ortiz M I. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci, 2003, 43: 141-151.
doi: 10.2135/cropsci2003.1410
[18] 李春霞. 锰、铁和钼肥处理种子与叶面喷施对小麦生长与吸收的影响及其机制. 西北农林科技大学硕士学位论文, 陕西咸阳, 2019.
Li C X. Effects and Mechanism of Seed Soaking and Foliar Spraying of Manganese, Iron and Molybdenum on Growth and Absorb of Wheat. MS Thesis of Northwest A&F University, Xianyang, Shaanxi, China, 2019 (in Chinese with English abstract).
[19] 刘铮. 土壤与植物中锰的研究进展. 土壤学进展, 1991, (6): 1-10.
Liu Z. Research progress of manganese in soil and plants. Prog Soil Sci, 1991, (6): 1-10. (in Chinese)
[20] Li B Y, Huang S M, Wei M B, Zhang H L, Shen A L, Xu J M, Ruan X L. Dynamics of soil and grain micronutrients as affected by long-term fertilization in an aquic inceptisol. Pedosphere, 2010, 20: 725-735.
doi: 10.1016/S1002-0160(10)60063-X
[21] 何红霞.栽培模式对旱地小麦籽粒产量和养分吸收利用的影响. 西北农林科技大学硕士学位论文, 陕西咸阳, 2018.
He H X. Wheat Grain Yield and Its Nutrient Uptake and Utilization Affected by Cultivation Patterns in Dryland. MS Thesis of Northwest A&F University, Xianyang, Shaanxi, China, 2018. (in Chinese with English abstract)
[22] 刘鑫, 朱端卫, 雷宏军, 耿明建, 周文兵. 酸性土壤活性锰与pH、Eh关系及其生物反应. 植物营养与肥料学报, 2003, 9: 317-323.
Liu X, Zhu D W, Lei H J, Geng M J, Zhou W B. Dynamic relationship between soil active Mn and pH Eh in acid soils and its biological response. Plant Nutr Fert Sci, 2003, 9: 317-323. (in Chinese)
[23] 黄德明, 徐秋明, 李亚星, 姚志东. 土壤氮、磷营养过剩对微量元素锌、锰、铁、铜有效性及植株中含量的影响. 植物营养与肥料学报, 2007, 13: 966-970.
Huang D M, Xu Q M, Li Y X, Yao Z D. Influence of soil N and P excess on the availability of Zn, Mn, Fe, Cu and there content in plant. Plant Nutr Fert Sci, 2007, 13: 966-970. (in Chinese)
[24] 王彩绒, 吕家珑, 胡正义, 杨林章, 高义明. 太湖流域典型蔬菜地土壤氮及pH空间变异特征. 水土保持学报, 2005, 19(3): 17-20.
Wang C R, Lyu J L, Hu Z Y, Yang L Z, Gao Y M. Spatial variability of soil nitrogen and pH in vegetable field in typical area of Taihu Lake Watershed. J Soil Water Conserv, 2005, 19(3): 17-20. (in Chinese with English abstract)
doi: 10.5958/2455-7145.2020.00003.X
[25] 丁少男, 薛萐, 刘国彬, 张超. 长期施肥对黄土丘陵区农田土壤微量元素有效含量的影响. 西北农林科技大学学报(自然科学版), 2017, 45: 124-130.
Ding S N, Xue S, Liu G B, Zhang C. Effect of long-term fertilization on soil microelements of farmland in hilly region of the loess plateau. J Northwest A&F Univ (Nat Sci Edn), 2017, 45: 124-130. (in Chinese with English abstract)
[26] 王丽, 王朝辉, 郭子糠, 陶振魁, 郑洺钧, 黄宁, 高志源, 张欣欣, 黄婷苗. 黄土高原不同地点小麦籽粒矿质元素的含量差异. 中国农业科学, 2020, 53: 3527-3540.
doi: 10.3864/j.issn.0578-1752.2020.17.010
Wang L, Wang Z H, Guo Z K, Tao Z K, Zheng M J, Huang N, Gao Z Y, Zhang X X, Huang T M. Differences of main nutrient concentration in wheat grain between typical locations of the loess plateau. Sci Agric Sin, 2020, 53: 3527-3540. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.17.010
[27] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53: 81-93.
doi: 10.3864/j.issn.0578-1752.2020.01.008
Huang N, Wang Z H, Wang L, Ma Q X, Zhang Y Y, Zhang X X, Wang R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Sci Agric Sin, 2020, 53: 81-93. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.01.008
[28] 高国良, 陈贵菊, 王福玉, 刘兴强, 王秋云, 尹逊利. 黄淮北片小麦参试品种(系)产量构成因素及其相互关系分析. 山东农业科学, 2016, 48: 15-18.
Gao G L, Chen G J, Wang F Y, Liu X Q, Wang Q Y, Yin S L. Analysis on yield components and their correlations of wheat varieties (lines) in North Huanghe-Huaihe region. Shandong Agric Sci, 2016, 48: 15-18. (in Chinese with English abstract)
[29] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51: 2722-2734.
doi: 10.3864/j.issn.0578-1752.2018.14.010
Huang Q N, Wang Z H, Huang T M, Hou S B, Zhang X, Ma Q X, Zhang X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Sci Agric Sin, 2018, 51: 2722-2734. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.14.010
[30] Murphy K M, Reeves P G, Jones S S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica, 2008, 163: 381-390.
doi: 10.1007/s10681-008-9681-x
[31] 党红凯, 李瑞奇, 李雁鸣, 张馨文, 孙亚辉. 超高产冬小麦四种微量元素的积累及其与产量性状的关系. 麦类作物学报, 2012, 32: 326-332.
Dang H K, Li R Q, Li Y M, Zhang X W, Sun Y H. Accumulation of four microelements and their relationship with yield traits in super high-yield winter wheat. J Triticeae Crops, 2012, 32: 326-332. (in Chinese with English abstract)
[32] Klikocka H, Marx M. Sulphur and nitrogen fertilization as a potential means of agronomic biofortification to improve the content and uptake of microelements in spring wheat grain DM. J Chem, 2018, (2): 1-12.
[33] 冯帆.黄淮海麦区不同年代冬小麦品种产量及相关性状演替规律. 西北农林科技大学博士学位论文, 陕西咸阳, 2018.
Feng F.Evolution of Yield and Related Traits for Winter Wheat Released in Different Decades in Huang-Huai-Hai Region. PhD Dissertation of Northwest A&F University, Xianyang, Shaanxi, China, 2018. (in Chinese with English abstract)
[34] 杨建堂, 王素芳, 霍晓婷, 王文亮, 王岩, 闫国正, 刘东菊. 高产冬小麦锰素吸收、分配特点的研究. 土壤通报, 1998, 29: 40-42.
Yang J T, Wang S F, Huo X T, Wang W L, Wang Y, Yan G Z, Liu D J. Study on manganese absorption and distribution characteristics of high yield winter wheat. Chin J Soil Sci, 1998, 29: 40-42. (in Chinese)
[35] Ullah A, Farooq M, Nadeem A, Rehman A, Asad S A, Nawaz A. Manganese nutrition improves the productivity and grain biofortification of fine grain aromatic rice in conventional and conservation production systems. Pad Water Environ, 2017, 15: 563-572.
[36] 郭春强, 黄杰, 曹燕燕, 廖平安, 葛昌斌, 黄全民, 乔冀良, 张振永. 小麦新品种漯麦6010稳产性、产量构成因素变异性及通径分析. 湖北农业科学, 2017, 56: 608-610.
Guo C Q, Huang J, Cao Y Y, Liao P A, Ge C B, Huang Q M, Qiao J L, Zhang Z Y. Path analysis of the factors and the variation of the composition of new varieties of wheat yield, the yield of Luomai 6010. Hubei Agric Sci, 2017, 56: 608-610. (in Chinese with English abstract)
[37] 张华崇, 赵树琪, 闫振华, 黄晓莉, 戴宝生, 李蔚. 湖北省近20年审定小麦品种的产量、品质性状及抗病性分析. 麦类作物学报, 2021, 41: 1356-1364.
Zhang H C, Zhao S Q, Yan Z H, Huang X L, Dai B S, Li W. Analysis of yield, quality and disease resistance traits of wheat varieties approved in Hubei province in the last two decades. J Triticeae Crops, 2021, 41: 1356-1364. (in Chinese with English abstract)
[38] 台萃, 武泰存, 王景安. 缺锰对不同基因型小麦生长的影响与机理. 天津农业科学, 2004, 10(1): 22-24.
Tai C, Wu T C, Wang J A. Mechanism and effect of manganese deficiency on growth of wheat genotypes. Tianjin Agric Sci, 2004, 10(1): 22-24. (in Chinese with English abstract)
[39] Senapati N, Semenov M A. Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Glob Food Sec, 2020, 24: 100340.
[40] 臧贺藏, 曹廷杰, 张杰, 赵晴, 邸佳颖, 张建涛, 庄家煜, 陈丹丹, 刘海礁, 郑国清, 李国强. 不同生态条件下小麦新品种产量的基因型与环境互作分析. 华北农学报, 2021, 36(6): 88-95.
doi: 10.7668/hbnxb.20192411
Zang H C, Cao T J, Zhang J, Zhao Q, Di J Y, Zhang J T, Zhuang J Y, Chen D D, Liu H J, Zheng G Q, Li G Q. Genotype and environment interaction effect on yield of new wheat cultivars under different ecological conditions. Acta Agric Boreali-Sin, 2021, 36(6): 88-95. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20192411
[41] 王振林. 冬小麦微量元素吸收特点的研究. 山东农业大学学报, 1989, (3): 27-32.
Wang Z L. Study on absorption characteristics of trace elements in winter wheat. J Shandong Agric Univ, 1989, (3): 27-32. (in Chinese)
[42] 刘学军, 吕世华, 张福锁, 毛达如. 施锰对不同基因型小麦锰营养与根际锰动态的影响. 中国农业大学学报, 1999, 4(3): 77-80.
Liu X J, Lyu S H, Zhang F S, Mao D R. Effect of Mn fertilization on Mn nutrition and dynamics of available Mn in rhizosphere of two wheat genotypes. J China Agric Univ, 1999, 4(3): 77-80. (in Chinese with English abstract)
[43] 张福锁, 方正, 吕世华. 不同小麦品种(品系)耐缺锰能力的比较研究. 植物营养与肥料学报, 1998, 4: 277-283.
Zhang F S, Fang Z, Lyu S H. Comparative study on manganese deficiency tolerance of different wheat varieties (lines). Plant Nutr Fert Sci, 1998, 4: 277-283. (in Chinese with English abstract)
[44] 王书转.长期施肥条件下土壤微量元素化学特性及有效性研究. 中国科学院大学博士学位论文, 北京, 2016.
Wang S Z. Availability and Chemical Characteristics of Trace Elements in Soils Under Long-term Fertilization.PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2016. (in Chinese with English abstract)
[45] 李峰, 田霄鸿, 陈玲, 李生秀. 栽培模式、施氮量和播种密度对小麦子粒中锌、铁、锰、铜含量和携出量的影响. 土壤肥料, 2006, (2): 42-46.
Li F, Tian X H, Chen L, Li S X. Effects of cultivation mode, nitrogen application rate and sowing density on the concentrations and carrying capacity of zinc, iron, manganese and copper in wheat grains. Soil Fert, 2006, (2): 42-46. (in Chinese with English abstract)
[46] 昝亚玲. 氮磷对旱地冬小麦产量、养分利用及籽粒矿质营养品质的影响. 西北农林科技大学硕士学位论文, 陕西咸阳, 2012.
Zan Y L. Effect of Nitrogen and Phosphorus Fertilizer Rate on Yield, Nutrient Utilization and Grain Mineral Nutrient Quality of Wheat in Dryland. MS Thesis of Northwest A&F University, Xianyang, Shaanxi, China, 2012. (in Chinese with English abstract)
[47] 江叶枫, 钟珊, 饶磊, 孙凯, 郭熙. 江西省耕地土壤有效态微量元素含量空间变异特征及其影响因素. 长江流域资源与环境, 2018, 27: 1159-1169.
Jiang Y F, Zhong S, Rao L, Sun K, Guo X. Spatial variation characteristics and influencing factors of available trace elements in cultivated soil in Jiangxi province. Resourc Environ Yangtze Basin, 2018, 27: 1159-1169. (in Chinese with English abstract)
[48] 张淑香, 王小彬, 金柯, 李秀英, 周勇, 姚宇卿. 干旱条件下氮、磷水平对土壤锌、铜、锰、铁有效性的影响. 植物营养与肥料学报, 2001, 7: 391-396.
Zhang S X, Wang X B, Jin K, Li X Y, Zhou Y, Yao Y Q. Effects of nitrogen and phosphorus levels on availability of zinc, copper, manganese and iron in soil under drought conditions. Plant Nutr Fert Sci, 2001, 7: 391-396. (in Chinese with English abstract)
[49] Shi M, Wang X S, Wang H L, Guo Z K, Wang R Z, Hui X L, Wang S, Kopittke P M, Wang Z H. High phosphorus fertilization changes the speciation and distribution of manganese in wheat grains grown in a calcareous soil. Sci Total Environ, 2021, 787, 147608.
doi: 10.1016/j.scitotenv.2021.147608
[50] Neilsen D, Neilsen G H, Sinclair A H, Linehan D J. Soil phosphorus status, pH and the manganese nutrition of wheat. Plant Soil, 1992, 145: 45-50.
doi: 10.1007/BF00009540
[51] Alam S, Rahman M H, Kamei S, Kawai S. Alleviation of manganese toxicity and manganese induced iron deficiency in barley by additional potassium supply in nutrient solution. Soil Sci Plant Nutr, 2002, 48: 387-392.
doi: 10.1080/00380768.2002.10409216
[52] 孙清斌. 锰与氮、钾配施对冬小麦产量和营养品质的影响及交互作用研究. 河南农业大学硕士学位论文, 河南郑州, 2005.
Sun Q B. Studies on Effect of Yield and Nutrition Quality of Winter Wheat and Interaction in Combined Application of Manganese, Nitrogen and Potassium. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2005. (in Chinese with English abstract)
[1] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[2] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体徐1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[3] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[4] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[5] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[6] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[7] 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274.
[8] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[9] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王晨阳, 王丽芳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[10] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[11] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[12] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[13] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[14] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[15] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .