欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1919-1929.doi: 10.3724/SP.J.1006.2023.23056

• 耕作栽培·生理生化 • 上一篇    下一篇

水氮减量密植玉米的产量及产量构成

韦金贵(), 郭瑶, 柴强*(), 殷文*(), 樊志龙, 胡发龙   

  1. 省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院, 甘肃兰州730070
  • 收稿日期:2022-08-05 接受日期:2022-10-10 出版日期:2023-07-12 网络出版日期:2022-10-18
  • 通讯作者: *柴强, E-mail: chaiq@gsau.edu.cn; 殷文, E-mail: yinwen@gsau.edu.cn
  • 作者简介:E-mail: 1946819335@qq.com
  • 基金资助:
    本研究由国家自然科学基金项目(32101857);本研究由国家自然科学基金项目(U21A20218);甘肃农业大学伏羲青年人才项目(Gaufx-03Y10);甘肃省重点人才项目(204197083016);中央引导地方科技发展专项(ZCYD-2021-10)

Yield and yield components of maize response to high plant density under reduced water and nitrogen supply

WEI Jin-Gui(), GUO Yao, CHAI Qiang*(), YIN Wen*(), FAN Zhi-Long, HU Fa-Long   

  1. State Key Laboratory of Arid Land Crop Science, College of Agronomy Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-08-05 Accepted:2022-10-10 Published:2023-07-12 Published online:2022-10-18
  • Contact: *E-mail: chaiq@gsau.edu.cn; E-mail: yinwen@gsau.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(32101857);The National Natural Science Foundation of China(U21A20218);The Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10);The Important talent of Gansu province(204197083016);The Central Government will Guide Local Science and Technology Development Projects(ZCYD-2021-10)

摘要:

针对干旱绿洲灌区水资源匮乏、玉米生产化肥投入量大等问题, 在水氮减量条件下, 探讨增大密度对玉米干物质积累、籽粒产量和产量构成的影响, 以期为建立水氮减量玉米稳产高效技术体系提供依据。2020—2021年, 在地方习惯灌水减量20% (3240 m3 hm-2, W1)、习惯灌水(4050 m3 hm-2, W2)和减量施氮25% (270 kg hm-2, N1)、习惯施氮(360 kg hm-2, N2)条件下, 研究密度从7.50万株 hm-2 (低, D1)提高30% (中, D2)、60% (高, D3)时, 玉米干物质积累及产量的响应特征。研究表明, 水、氮减量均显著降低玉米籽粒产量, 增密30%可补偿水氮同时减量导致的产量降低效应; 施氮量不变降低灌水量时, 增密可显著提高产量。2个试验年度内, W1较W2、N1较N2产量分别降低3.0%、12.9%, D2、D3较D1产量分别高12.9%、9.2%; W1N1D1较W2N2D1处理减产12.3%, W1N1D2与W2N2D1处理产量差异不显著。增密30%能够补偿水氮减量减产的主要原因是提高了灌浆初期到成熟期干物质的累积量和成穗数, W1N1D2与W2N2D1相比, 灌浆初期到成熟期干物质积累量提高5.8%, Vmax (最大干物质积累速率)、Vmean (平均干物质积累速率)、Tm (最大干物质积累速率出现时间)、HI (收获指数)差异均不显著, 穗数增加24.7%, 但穗粒数、千粒重分别降低19.3%和14.8%。W1N2D2较W2N2D1处理增产13.9%。当施氮量不变时, 减水增密稳产的主要原因是提高了干物质积累量、Vmean、HI和穗数, W1N2D2与W2N2D1相比, 穗数、干物质积累、Vmean和HI分别提高24.8%、10.2%、8.4%和4.7%, 千粒重差异不显著。因此, 本试验水氮同步减量条件下增密30%, 是绿洲灌区玉米水氮节约稳产高产的可行措施; 在施氮量保持不变但灌水量减少20%时, 密度提高30%是玉米节水增产的有效措施。

关键词: 水氮减量, 密植, 玉米, 干物质积累, 产量, 补偿效应

Abstract:

Water shortage and high fertilizer input have become the dominant factors restraining maize production in arid oasis irrigation area, it is urgent to study the technology of stable yield and increasing yield of crops with reduced water and fertilizer. To provide basis for establishing the efficient technology of stable and high yield of maize with water and nitrogen reduction, the effects of increasing density on dry matter accumulation, grain yield and yield components of maize were investigated under reduced water and nitrogen supply. A split-split plot field experiment was conducted in 2020 and 2021. Under two irrigation levels on local conventional irrigation reduced by 20% (W1) and local conventional irrigation (W2), and two levels of nitrogen fertilizer at a local conventional nitrogen reduced by 25% (N1) and local conventional nitrogen (N2), the response characteristics of dry matter accumulation and yield of maize were studied when maize density increased from 75,000 plants·hm-2 (low density, D1) by 30% (medium density D2), and by 60% (high density D3). The results showed that the grain yield of maize was significantly decreased with the reduced water and nitrogen supply, and increasing planting density by 30% could compensate the negative effect on the decrease of yield. Under the reduced water supply while maintaining N application rate, the dense planting density could significantly increase grain yield. In the two experimental years, the yield of W1 was 3.0% lower than W2. The grain yield of N1 was 12.9% lower than N2. Compared with D1, D2, and D3 increased grain yield by 12.9% and 9.2%, respectively. Compared with W2N2D1, the grain yield of W1N1D1 was decreased by 12.3%, but there was no significant difference between W2N2D1 andW1N1D2 treatments. Under the reduced water and nitrogen supply, increasing density could compensate the negative effect on the decrease of yield was mainly attributed to promoting the dry matter accumulation from early-filling to maturing stage and improving panicle number significantly. Compared with W2N2D1, the dry matter accumulation of W1N1D2 was increased by 5.8% from the early-filling to maturing stage of maize, but there were no significant differences on Vmax (maximum rate of dry matter accumulation), Vmean (mean increase rate of dry matter accumulation), Tm (the days of the maximum rate), and HI (harvest index) between W1N1D2 and W2N2D1 treatments. Compared with W2N2D1, the spike number of W1N1D2 was increased by 24.7%, but the number of kernels per spike and 1000-kernel weight of W1N1D2 were decreased by 19.3% and 14.8%, respectively. The grain yield of W1N2D2 was 13.9% higher than W2N2D1. When the nitrogen application rate was unchanged, the main reasons for the reduced irrigation, increasing density, and stable yield were the increase of dry matter accumulation, Vmean, HI, and the panicle number. Compared with W2N2D1, W1N2D2 increased panicle number, dry matter accumulation, Vmean and HI by 24.8%, 10.2%, 8.4%, and 4.7%, respectively, but there was not significant difference in 1000-kernel weight between W1N2D2 and W2N2D1 treatments. In conclusion, increasing planting density by 30% under the simultaneous reduction of water and nitrogen in the experiment was a feasible measure to save water and nitrogen for stable and high yield of maize in oasis irrigation areas. Increasing planting density by 30% was a feasible measure to save water and increase yield of maize when irrigation water was reduced by 20% while maintaining N application rate

Key words: water and nitrogen reduction, high planting density, maize, dry matter accumulation, yield, compensation effect

图1

2020-2021年度试验区玉米生育期降水量及日平均温度变化"

表1

不同处理的灌水制度和施氮制度"

灌水量
Irrigation quota (m3 hm-2)
施氮量
N fertilizer rate (kg hm-2)
种植密度
Planting density
(×104 plant hm-2)
代码
Code
水平Level 生育时期
Growth stage
定额
Quota
水平Level 生育时期
Growth stage

Amount
水平Level
Amount
W2 播种期 Sowing 0 N2 播种期 Sowing 108 D1 7.50 W2N2D1
苗期 Seeding 900 大喇叭口期 Big flare 180 D2 9.75 W2N2D2
拔节期 Jointing 750 灌浆期 Filling 72 D3 12.00 W2N2D3
大喇叭口期 Big flare 900 N1 播种期 Sowing 81 D1 7.50 W2N1D1
开花期 Flowering 750 大喇叭口期 Big flare 135 D2 9.75 W2N1D2
灌浆期 Filling 750 灌浆期 Filling 54 D3 12.00 W2N1D3
W1 播种期 Sowing 0 N2 播种期 Sowing 108 D1 7.50 W1N2D1
苗期 Seeding 720 大喇叭口期 Big flare 180 D2 9.75 W1N2D2
拔节期 Jointing 600 灌浆期 Filling 72 D3 12.00 W1N2D3
大喇叭口期 Big flare 720 N1 播种期 Sowing 81 D1 7.50 W1N1D1
开花期 Flowering 600 大喇叭口期 Big flare 135 D2 9.75 W1N1D2
灌浆期 Filling 600 灌浆期 Filling 54 D3 12.00 W1N1D3

表2

不同处理模式下玉米的产量、产量构成因素"

年份
Year
处理
Treatment
籽粒产量
Grain yield
(kg hm-2)
生物产量
Biomass
(kg hm-2)
收获指数
Harvest index
产量构成因素 Yield components
穗数
Ear number
(ear m-2)
穗粒数
Kernel number per spike (grain ear-1)
千粒重
1000-kernel weight (g)
2020 W1N1D1 12,579 h 30,873 e 0.41 bc 7.38 d 509.17 e 322.84 f
W1N1D2 14,300 ef 33,936 d 0.42 b 9.29 c 477.95 f 310.88 g
W1N1D3 13,804 fg 40,822 b 0.34 f 11.43 b 455.89 g 292.18 h
W1N2D1 14,938 e 31,918 de 0.47 a 7.66 d 558.07 bc 370.48 ab
W1N2D2 17,816 ab 37,006 c 0.48 a 9.46 c 543.25 cd 366.42 b
W1N2D3 16,325 cd 44,445 a 0.37 de 11.88 a 484.03 f 332.77 e
W2N1D1 13,052 gh 36,534 c 0.36 ef 7.29 d 553.66 cd 368.69 ab
W2N1D2 13,813 fg 36,814 c 0.38 de 9.40 c 538.83 d 351.03 c
W2N1D3 14,815 e 43,834 a 0.34 f 11.45 b 476.84 f 324.59 ef
W2N2D1 15,772 d 32,667 de 0.48 a 7.53 d 597.70 a 376.36 a
W2N2D2 17,942 a 37,168 c 0.48 a 9.51 c 573.75 b 369.91 ab
W2N2D3 17,045 bc 43,311 a 0.39 cd 11.98 a 509.69 e 342.18 d
2021 W1N1D1 13,680 f 29,624 e 0.46 a 7.29 d 517.59 cd 349.43 bc
W1N1D2 14,586 cd 33,938 cd 0.43 ab 9.49 c 476.77 ef 331.81 cd
W1N1D3 14,255 d 40,330 ab 0.35d 11.32 b 440.46 h 292.91 e
W1N2D1 13,677 f 34,123 cd 0.40 bc 7.53 d 563.57 b 366.82 ab
W1N2D2 16,294 a 36,401 c 0.45 a 9.34 c 516.62 cd 363.91 ab
2021 W1N2D3 15,320 b 41,935 a 0.37 cd 11.55 b 464.55 fg 330.62 bc
W2N1D1 13,613 f 31,790 de 0.43 ab 7.43 d 556.88 b 372.09 a
W2N1D2 14,868 c 37,257 bc 0.40 bc 9.49 c 508.35 d 346.04 bc
W2N1D3 13,612 f 40,600 ab 0.34 d 11.36 b 453.33 gh 315.72 d
W2N2D1 14,178 d 35,005 cd 0.41 bc 7.54 d 585.10 a 377.56 a
W2N2D2 16,294 a 37,471 bc 0.44 ab 9.43 c 528.01 c 366.71 ab
W2N2D3 16,561 a 42,059 a 0.39 bc 12.03 a 480.98 e 334.22 cd
显著性分析 P-value
灌水 Irrigation (W) * NS NS NS ** **
施氮 Nitrogen (N) ** * ** NS ** **
密度 Density (D) ** ** ** ** ** **
灌水×施氮W×N ** * ** NS NS **
灌水×密度W×D NS * * NS NS NS
施氮×密度N×D ** NS NS ** NS *
灌水×施氮×密度W×N×D * NS NS NS NS NS

图2

不同处理玉米干物质积累量 处理缩写同表1。"

表3

不同处理玉米干物质积累速率的Logistic方程回归分析"

年份
Year
处理
Treatment
回归方程
Regression equation
R2 最大增长速率出现天数
Days of MIR
(Tm, d)
最大增长速率
Maximum increase rate
(Vmax, kg hm-2 d-1)
平均增长速率
Mean increase rate
(Vmean, kg hm-2 d-1)
2020 W1N1D1 Y=31524/(1+e6.401-0.070*t) 0.989 91.4 cd 551.7 de 210.0 f
W1N1D2 Y=35452/(1+e5.671-0.059*t) 0.979 96.1 abc 522.9 de 230.9 d
W1N1D3 Y=41017/(1+e5.279-0.056*t) 0.996 94.3 cd 574.2 bc 251.7 c
W1N2D1 Y=36583/(1+e5.226-0.055*t) 0.989 95.0 bcd 503.0 e 217.1 ef
W1N2D2 Y=39032/(1+e5.280-0.055*t) 0.993 96.0 abc 536.7 de 277.7 b
W1N2D3 Y=46356/(1+e5.185-0.057*t) 0.991 91.0 ab 660.6 ab 302.3 a
W2N1D1 Y=32725/(1+e6.652-0.075*t) 0.998 88.7 e 613.6 bc 248.5 c
W2N1D2 Y=35459/(1+e6.088-0.063*t) 0.996 96.6 ab 558.5 cde 250.4 c
W2N1D3 Y=41225/(1+e5.944-0.066*t) 0.995 90.1 de 680.2 a 298.2 a
W2N2D1 Y=34471/(1+e5.585-0.059*t) 0.997 94.7 cd 508.4 e 222.2 de
W2N2D2 Y=40810/(1+e5.560-0.055*t) 0.997 101.1 a 561.1 cde 252.9 c
W2N2D3 Y=45861/(1+e5.368-0.057*t) 0.964 94.2 cd 653.5 ab 294.6 a
2021 W1N1D1 Y=33565/(1+e5.261-0.058*t) 0.996 90.7 cd 486.7 d 210.1 d
W1N1D2 Y=35960/(1+e5.235-0.059*t) 0.998 89.2 d 527.4 cd 240.7 cd
W1N1D3 Y=42586/(1+e5.344-0.057*t) 0.998 93.8 abc 606.9 ab 286.0 ab
W1N2D1 Y=36375/(1+e5.541-0.059*t) 0.993 93.9 ab 536.5 cd 242.0 cd
W1N2D2 Y=41353/(1+e5.550-0.058*t) 0.990 96.2 a 596.2 abc 258.2 abc
W1N2D3 Y=44211/(1+e5.451-0.056*t) 0.997 96.8 a 622.6 ab 297.4 a
W2N1D1 Y=34439/(1+e5.665-0.062*t) 0.995 91.9 bcd 530.9 cd 225.5 cd
W2N1D2 Y=39923/(1+e5.183-0.057*t) 0.998 90.9 bcd 568.9 bc 264.2 abc
W2N1D3 Y=42129/(1+e5.319-0.058*t) 0.996 92.2 bcd 607.4 ab 287.9 ab
W2N2D1 Y=36517/(1+e5.739-0.062*t) 0.998 92.6 bc 566.0 bc 248.3 bcd
W2N2D2 Y=39238/(1+e5.733-0.062*t) 0.997 93.0 bc 604.9 ab 265.8 abc
W2N2D3 Y=44421/(1+e5.575-0.058*t) 0.998 96.1 a 644.1 a 298.3 a
显著性分析P-value
灌水 Irrigation (W) NS * *
施氮 Nitrogen (N) * NS *
密度 Density (D) * ** **
灌水×施氮W×N NS NS *
灌水水平×密度W×D NS NS NS
施氮水平×密度N×D NS NS NS
灌水×施氮×密度W×N×D NS NS NS

图3

不同处理玉米群体生长率动态 处理缩写同表1。"

表4

不同处理玉米籽粒产量与产量构成因素, 干物质积累和收获指数的相关系数和通径系数"

指标
Parameter
与籽粒产量的
简单相关系数
Correlation coefficient with yield
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient
穗数
SN
穗粒数KSN 千粒重TKW 干物质积累
DMA
收获指数HI
穗数SN 0.396** 0.494** -0.117 -0.061 0.603 -0.524
穗粒数KSN 0.129 0.158* -0.365 0.085 -0.372 0.623
千粒重TKW 0.255* 0.099 -0.304 0.136 -0.271 0.594
干物质积累DMA 0.358* 0.735** 0.405 -0.080 -0.037 -0.667
收获指数HI 0.430** 1.013** -0.256 0.097 0.058 -0.483
[1] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Aacd Sci USA, 2011, 8: 20260-20264.
[2] Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327: 812-818.
doi: 10.1126/science.1185383 pmid: 20110467
[3] Fasakhodi A A, Nouri S H, Amini M. Water resources sustainability and optimal cropping pattern in farming systems: a multi-objective fractional goal programming approach. Agric Water Manag, 2010, 24: 4639-4657.
[4] 孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40: 1639-1649.
doi: 10.3724/SP.J.1006.2014.01639
Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jiang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014, 40: 1639-1649. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01639
[5] Basso B, Dumont B, Cammarano D, Pezzuolo A, Marinello F, Sartori L. Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Sci Total Environ, 2016, 545: 227-235.
[6] 王小彬, 代快, 赵全胜, 武雪萍, 张丁辰, 冯宗会, 贾树龙, 杨云马, 蔡典雄. 农田水氮关系及其协同管理. 生态学报, 2010, 30: 7001-7015.
Wang X B, Dai K, Zhao Q S, Wu X P, Zhang D C, Feng Z H, Jia S L, Yang Y M, Cai D X. Opinions on water-nitrogen relations and their synergic management. Acta Ecol Sin, 2010, 30: 7001-7015. (in Chinese with English abstract)
[7] 葛均筑, 李淑娅, 钟新月, 袁国印, 徐莹, 田少阳, 曹凑贵, 翟中兵, 刘诗晴, 展茗, 赵明. 施氮量与地膜覆盖对长江中游春玉米产量性能及氮肥利用效率的影响. 作物学报, 2014, 40: 1081-1092.
doi: 10.3724/SP.J.1006.2014.01081
Ge J Z, Li S Y, Zhong X Y, Yuan G Y, Xu Y, Tian S Y, Cao C G, Zhai Z B, Liu S Q, Zhan M, Zhao M. Effects of nitrogen application and film mulching on yield performance parameters and nitrogen use efficiency of spring maize in the middle reaches of Yangtze River. Acta Agron Sin, 2014, 40: 1081-1092. (in Chinese with English abstract)
[8] Kun H. Zhou C J, Sheng H Y, Yang Y, Zhang L, Wang L Q, Chen G Q, Li Z J. Agronomic improvements in corn by alternating nitrogen and irrigation to various plant densities. Agron J, 2015, 107: 93-103.
doi: 10.2134/agronj14.0335
[9] 殷文, 柴强, 于爱忠, 赵财, 樊志龙, 胡发龙, 范虹, 郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响. 中国农业科学, 2020, 53: 4764-4776.
doi: 10.3864/j.issn.0578-1752.2020.23.004
Yin W, Chai Q, Yu A Z, Zhao C, Fan Z L, Hu F L, Fan H, Guo Y. Effects of intercropped wheat straw retention on canopy temperature and photosynthetic physiological characteristics of intercropped maize mulched with plastic during grain filling stage. Sci Agric Sin, 2020, 53: 4764-4776.
doi: 10.3864/j.issn.0578-1752.2020.23.004
[10] 程前, 李广浩, 陆卫平, 陆大雷. 增密减氮提高夏玉米产量和氮素利用效率. 植物营养与肥料学报, 2020, 26: 1035-1046.
Cheng Q, Li G H, Lu W P, Lu D L. Increasing planting density and decreasing nitrogen rate increase yield and nitrogen use efficiency of summer maize. J Plant Nutr Fert, 2020, 26: 1035-1046. (in Chinese with English abstract)
[11] Calvio P A, Andrade F H, Sadras V O. Maize yield as affected by water availability, soil depth, and crop management. Agron J, 2003, 95: 275-281.
doi: 10.2134/agronj2003.2750
[12] 周英捷, 傅丰贝, 李伏生. 水肥调控下糯玉米生长、产量和水分利用效率研究. 干旱地区农业研究, 2014, 32: 114-118.
Zhou Y J, Fu F B, Li F S. Research on the growth, yield and water use efficiency of sticky maize under water and fertilizer regulation. Agric Res Arid Areas, 2014, 32:114-118. (in Chinese with English abstract)
[13] 严田蓉, 李旭毅, 李娜, 蒋明金, 杨志远, 何艳, 王春雨, 王海月, 马均. 氮肥运筹与栽植方式对杂交籼稻籽粒灌浆及产量的影响. 中国生态农业学报, 2017, 25: 1485-1494.
Yan T R, Li X Y, Li N, Jiang M J, Yang Z Y, He Y, Wang C Y, Wang H Y, Ma J. Effect of nitrogen management and cultivation method on grain-filling characteristics and grain yield of indica hybrid rice. Chin J Eco-Agric, 2017, 25: 1485-1494. (in Chinese with English abstract)
[14] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183-3197.
doi: 10.3864/j.issn.0578-1752.2021.15.004
Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183-3197. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.15.004
[15] 魏廷邦, 柴强, 王伟民, 王军强. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52: 428-444.
doi: 10.3864/j.issn.0578-1752.2019.03.004
Wei T B, Chai Q, Wang W M, Wang J Q. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Sci Agric Sin, 2019, 52: 428-444. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.03.004
[16] 李敏, 罗德强, 江学海, 蒋明金, 姬广梅, 李立江, 周维佳. 控水增密模式对杂交籼稻减氮后产量形成的调控效应. 作物学报, 2020, 46: 1430-1447.
doi: 10.3724/SP.J.1006.2020.02017
Li M, Luo D Q, Jiang X H, Jiang M J, Ji G M, Li L J, Zhou W J. Regulations of controlled irrigations and increased densities on yield formation of hybrid indica rice under nitrogen-reduction conditions. Acta Agron Sin, 2020, 46: 1430-1447. (in Chinese with English abstract)
[17] Tokatlidis I S, Koutroubas S D. A review of maize hybrids' dependence on high plant populations and its implications for crop yield stability. Field Crops Res, 2004, 88: 103-114.
doi: 10.1016/j.fcr.2003.11.013
[18] Tollenaar M, Deen W, Echarte L, Liu W. Effect of crowding stress on dry matter accumulation and harvest index in maize. Agron J, 2006, 98: 930-937.
doi: 10.2134/agronj2005.0336
[19] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响. 作物学报, 2021, 47: 738-751.
doi: 10.3724/SP.J.1006.2021.03044
Zheng Y X, Chen D, Wei P C, Lu P, Yang J Y, Luo S K, Ye K M, Song B. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province. Acta Agron Sin, 2021, 47: 738-751. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.03044
[20] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15000 kg hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45: 3437-3445.
doi: 10.3864/j.issn.0578-1752.2012.16.025
Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K. Effects of density on maize yield and yield components. Sci Agric Sin, 2012, 45: 3437-3445. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2012.16.025
[21] Chen K, Camberato J J, Tuinstra M R, Saratha V, Kumudini S V, Tollenaar M, Vyn T J. Genetic improvement in density and nitrogen stress tolerance traits over 38 years of commercial maize hybrid release. Field Crops Res, 2016, 196: 438-451.
doi: 10.1016/j.fcr.2016.07.025
[22] 殷文, 陈桂平, 郭瑶, 樊志龙, 胡发龙, 范虹, 于爱忠, 赵财, 柴强. 春小麦秸秆还田对后茬玉米干物质积累及产量形成的调控效应. 中国生态农业学报, 2020, 28: 1210-1218.
Yin W, Chen G P, Guo Y, Fan Z L, Hu F L, Fan H, Yu A Z, Zhao C, Chai Q. Responses of dry matter accumulation and yield in a following maize crop to spring wheat straw returning. Chin J Eco-Agric, 2020, 28: 1210-1218 (in Chinese with English abstract).
[23] Calvino P A, Andrade F H, Sadras V O. Maize yield as affected by water availability, soil depth, and crop management. Agron J, 2003, 95: 275-281.
doi: 10.2134/agronj2003.2750
[24] Han K, Zhou C, Sheng H, Yang Y, Zhang L, Wang L. Improvements in corn yield, N uptake, and water use efficiency by alternating N rate and irrigation to various plant densities. Agron J, 2014, 107: 93-103.
doi: 10.2134/agronj14.0335
[25] Du X B, Wang Z, Lei W X, Kong L C. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Sci Rep, 2021, 11: 1-12.
doi: 10.1038/s41598-020-79139-8
[26] 薛吉全, 张仁和, 马国胜, 路海东, 张兴华, 李凤艳, 郝引川, 邰书静. 种植密度、氮肥和水分胁迫对玉米产量形成的影响. 作物学报, 2010, 36: 1022-1029.
doi: 10.3724/SP.J.1006.2010.01022
Xue J Q, Zhang R H, Ma G S, Lu H D, Zhang X H, Li F Y, Hao Y C, Tai S J. Effects of plant density, nitrogen application, and water stress on yield formation of maize. Acta Agron Sin, 2010, 36: 1022-1029. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01022
[27] 王永宏, 王克如, 赵如浪, 王楷, 赵健, 王喜梅, 李健, 梁明晰, 李少昆. 高产春玉米源库特征及其关系. 中国农业科学, 2013, 46: 257-269.
doi: 10.3864/j.issn.0578-1752.2013.02.005
Wang Y H, Wang K R, Zhao R L, Wang K, Zhao J, Wang X M, Li J, Liang M X, Li S K. Relationship between the source and sink of spring maize with high yield. Sci Agric Sin, 2013, 46: 257-269. (in Chinese with English abstract)
[28] 杨哲, 于胜男, 高聚林, 田甜, 孙继颖, 魏淑丽, 胡树平, 李荣发, 李从锋, 王志刚. 主要栽培措施对北方春玉米产量贡献的定量评估. 中国农业科学, 2020, 53: 3024-3035.
doi: 10.3864/j.issn.0578-1752.2020.15.004
Yang Z, Yu S N, Gao J L, Tian T, Sun J Y, Wei S L, Hu S P, Li R F, Li C F, Wang Z G. Quantitative evaluation of the contribution of main management factors to grain yield of spring maize in north China. Sci Agric Sin, 2020, 53: 3024-3035. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.15.004
[29] 赵宝泉, 王茂文, 丁海荣, 邢锦城, 朱小梅, 刘冲, 董静, 洪立洲. 密度和有机肥对苏北滩涂蓖麻群体生长及产量构成的影响. 中国生态农业学报, 2017, 25: 1306-1316.
Zhao B Q, Wang M W, Ding H R, Xing J C, Zhu X M, Liu C, Dong J, Hong L Z. Effect of organic fertilizer on growth and yield components of castor under different planting densities. Chin J Eco-Agric, 2017, 25: 1306-1316. (in Chinese with English abstract)
[30] 丁永刚, 汤小庆, 梁鹏, 罗周, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 减氮对不同氮效率小麦品种花后光合物质生产力和产量的影响. 麦类作物学报, 2021, 41: 490-498.
Ding Y G, Tang X Q, Liang P, Luo Z, Zhu M, Li C Y, Zhu X K, Ding J F, Guo W S. Effects of reduced nitrogen application on post anthesis photosynthetic production and grain yield of wheat cultivars with various nitrogen utilization efficiency. J Triticeae Crops, 2021, 41: 490-498. (in Chinese with English abstract)
[31] 周磊, 甘毅, 欧晓彬, 王根轩. 作物缺水补偿节水的分子生理机制研究进展. 中国生态农业学报, 2011, 19: 217-225.
Zhou L, Gan Y, Ou X B, Wang G X. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production. Chin J Eco-Agric, 2011, 19: 217-225. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2011.00217
[32] Hayati R, Egli D B, Crafts-Brandner S J. Carbon and nitrogen supply during seed filling and leaf senescence in soybean. Crop Sci, 1995, 35: 1063-1069.
doi: 10.2135/cropsci1995.0011183X003500040024x
[33] 赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44: 1694-1703.
doi: 10.3724/SP.J.1006.2018.01694
Zhao C, Wang Q M, Guo Y, Yin W, Fan Z L, Hu F L, Yu A Z, Chai Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under no-tillage with previous plastic mulched maize. Acta Agron Sin, 2018, 44: 1694-1703. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01694
[1] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[2] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[3] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[4] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[5] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[6] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[7] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王晨阳, 王丽芳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[8] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[9] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[10] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[11] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[12] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[13] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[14] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[15] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .