欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1930-1941.doi: 10.3724/SP.J.1006.2023.22037

• 耕作栽培·生理生化 • 上一篇    下一篇

齐穗后遮阴时长对西北稻区粳稻产量和品质的影响

邓艾兴1(), 李歌星1,2(), 吕玉平3, 刘猷红4, 孟英4, 张俊1,*(), 张卫建1   

  1. 1中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点实验室, 北京100081
    2河南农业大学农学院, 河南郑州450046
    3新疆农业科学院粮食作物研究所, 新疆乌鲁木齐830091
    4黑龙江省农业科学院耕作栽培研究所, 黑龙江哈尔滨150086
  • 收稿日期:2022-06-14 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2022-12-26
  • 通讯作者: *张俊, E-mail: zhangjun@caas.cn
  • 作者简介:邓艾兴, E-mail: dengaixing@caas.cn
    李歌星, E-mail: 15993023318@163.com第一联系人:**同等贡献
  • 基金资助:
    本研究由国家自然科学基金项目(32071950);科技援疆计划项目(2021E02008);国家重点研发计划项目(2016YFD0300501)

Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China

DENG Ai-Xing1(), LI Ge-Xing1,2(), LYU Yu-Ping3, LIU You-Hong4, MENG Ying4, ZHANG Jun1,*(), ZHANG Wei-Jian1   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
    3Research Institute of Grain Crops, Xinjiang Academy of Agricultural Science, Urumqi 830091, Xinjiang, China
    4Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2022-06-14 Accepted:2022-11-25 Published:2023-07-12 Published online:2022-12-26
  • Contact: *E-mail: zhangjun@caas.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    The National Natural Science Foundation of China(32071950);The Science and Technology Support Program of Xinjiang(2021E02008);The National Key Research and Development Program of China(2016YFD0300501)

摘要:

灌浆期光照强度对保障水稻产量和稻米品质至关重要。本研究以常规高产水稻品种(新稻41、吉粳88)和优质水稻品种(粮粳10号、吉粳515)作为研究对象, 以不遮阴作为对照, 于2018和2019年在新疆乌鲁木齐研究了齐穗后不同遮阴时长处理(遮阴10 d、20 d和持续遮阴)对水稻产量及稻米品质的影响。结果表明, 齐穗后遮阴延长了水稻灌浆进程, 降低了结实率、千粒重和产量; 遮阴同时导致了籽粒直链淀粉含量显著降低, 蛋白质含量显著增加, 进而导致水稻垩白粒率和垩白度增加, 淀粉糊化特性和食味值变差。与不遮阴相比, 齐穗后遮阴10 d、20 d和持续遮阴处理2年平均水稻结实率和千粒重分别下降了3.5%、9.7%、11.1%和3.7%、7.1%、13.1%, 进而导致产量分别下降了11.3%、16.5%和31.7%。直链淀粉含量和食味值受齐穗后0~10 d遮阴的影响不大, 齐穗后遮阴20 d和持续遮阴处理较对照2年平均籽粒蛋白质含量分别增加了20.5%和30.8%, 直链淀粉含量降低了3.6%和4.6%, 崩解值和食味值分别降低了15.2%、26.1%和3.9%、7.7%。籽粒垩白粒率受齐穗后遮阴的影响因灌浆期背景光照强度而异, 2018年齐穗后遮阴10 d水稻垩白粒率增幅最大, 达152.1%, 2019年为齐穗后遮阴20 d增幅最大, 达345.5%。高产水稻品种对齐穗后遮阴时长的敏感程度大于优质水稻品种, 其结实率和千粒重下降幅度更大, 产量更易受遮阴的影响; 并且高产水稻品种垩白粒率增加幅度明显大于优质水稻品种, 导致其更易受遮阴影响。综上, 齐穗后20 d是遮阴影响稻米外观品质的关键时期, 且遮阴时长的影响取决于背景光照强度; 遮阴时间越长, 稻米蒸煮食味品质越差。本研究将为我国优质粳稻生产应对未来气候变化提供科学依据。

关键词: 水稻, 齐穗后遮阴, 产量, 品质, 气候变化

Abstract:

Light intensity at grain filling stage is an important ecological factor for high rice yield and quality. To investigate the effects of shading duration on yield and quality of two high yielding (Xindao 41, Jijing 88) and two good quality (Liangjing 10, Jijing 515) Japonica rice cultivars 10 days after heading (DAH10), 20 days after heading (DAH20), heading to maturity (DAHM), and no shading as the control (CK), this experiment was conducted in Urumqi, Xinjiang, China, in 2018 and 2019. The results showed that, shading after rice heading lengthened grain filling duration, and decreased the seed setting rate, 1000-grain weight, and rice yield. The decreasing amylose content and increasing protein content under shading after heading led to an increase in chalky grain rate, degree of chalkiness, and worsened significantly paste property and taste value. Compared to CK, mean seed setting rate and thousand grain weight of DAH10, DAH20 and DAHM decreased by 3.5%, 9.7%, 11.1% and 3.7%, 7.1%, 13.1% respectively, leading to significant decrease in yield during the two years period by 11.3%, 16.5%, and 31.7%, respectively. There was no obvious influence of first ten-day shading after heading on grain amylose content and taste value. The protein content of DAH20 and DAHM in the two years increased by 20.5% and 30.8%, respectively, while amylose content decreased by 3.6% and 4.6%, respectively. This resulted in the decreasing breakdown and taste values by 15.2%, 26.1%, and 3.9%, 7.7% respectively. The effects of shading duration after heading on chalky grain rate varied with the local background light intensity. The increase of 152.1% chalky grain rate occurred in the first ten-day after heading in 2018, while the increase of 345.5% was observed 20 days after heading in 2019. High yield rice cultivars had more sensitivity to shading duration after heading compared to good quality rice cultivars. Decreases of grain filling rate and 1000-grain weight of the high yield cultivars reduced grain yield, while it led to higher chalkiness rate. In conclusion, 20 days of shading after rice heading was the key period to affect the appearance quality in rice, and the shading duration depended on the background light intensity. The longer the shading time, the worse the cooking quality of rice. This study provides a scientific basis for japonica rice production in the future climate change.

Key words: rice, shading after heading, yield, quality, climate change

图1

试验点生育期日平均温度、降水量(A)和太阳辐射量(B)"

表1

2018-2019年不同遮阴时长对水稻生育时期的影响"

品种
Cultivar
处理
Treatment
2018 2019
播种-齐穗
Seeding-
Heading
齐穗-成熟
Heading-
Maturity
播种-成熟
Seeding-
Maturity
播种-齐穗
Seeding-
Heading
齐穗-成熟
Heading-
Maturity
播种-成熟
Seeding-
Maturity
新稻41 CK 125 42 167 119 47 166
Xindao 41 DAH10 125 55 180 119 48 167
DAH20 125 61 186 119 50 169
DAHM 125 77 202 119 54 173
吉粳88 CK 120 43 163 118 47 165
Jijing 88 DAH10 120 48 168 118 49 167
DAH20 120 56 176 118 50 168
DAHM 120 70 190 118 54 172
粮粳10号 CK 125 43 168 121 47 168
Liangjing 10 DAH10 125 56 181 121 49 170
DAH20 125 61 186 121 54 175
DAHM 125 78 203 121 58 179
吉粳515 CK 114 46 160 118 47 165
Jijing 515 DAH10 114 51 165 118 49 167
DAH20 114 56 170 118 51 169
DAHM 114 72 186 118 54 172

表2

齐穗后不同遮阴时长对水稻产量及产量构成的影响"

年份
Year
品种
Cultivar name
处理
Treatment
有效穗
Effective panicles
(×104 hm-2)
穗粒数
Spikelet per panicle
结实率
Seed setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield
(t hm-2)
2018 新稻41号 CK 516.2 a 79.7 b 87.2 a 26.0 a 9.4 a
Xindao 41 DAH10 508.0 a 83.2 ab 83.0 b 23.9 b 7.9 b
DAH20 486.6 a 84.1 ab 66.1 c 22.8 c 7.2 c
DAHM 512.9 a 95.1 a 59.6 d 21.3 d 5.1 d
吉粳88 CK 404.1 a 99.1 a 96.2 a 25.0 a 9.1 a
Jijing 88 DAH10 402.0 a 90.0 a 92.9 ab 24.3 b 7.3 b
DAH20 439.2 a 98.1 a 83.6 bc 23.5 c 7.1 b
DAHM 422.9 a 92.1 a 79.7 c 18.9 d 5.8 c
粮粳10号 CK 401.6 a 79.7 a 91.7 a 25.2 a 8.6 a
Liangjing 10 DAH10 408.2 a 79.4 a 92.2 a 24.6 ab 8.0 a
DAH20 427.1 a 79.5 a 87.7 b 24.0 b 7.3 b
DAHM 396.2 a 82.7 a 85.3 c 23.1 c 6.2 c
吉粳515 CK 342.9 a 90.7 a 96.3 a 25.4 a 8.3 a
Jijing 515 DAH10 364.9 a 88.2 a 93.9 a 25.1 a 7.8 b
DAH20 380.1 a 86.5 a 90.7 a 23.7 b 7.1 c
DAHM 366.3 a 85.5 a 73.2 b 22.9 c 6.7 d
2019 新稻41号 CK 477.5 98.8 a 97.1 a 24.3 a 9.1 a
Xindao 41 DAH10 452.8 a 107.4 a 92.6 b 23.2 ab 8.2 ab
DAH20 569.5 a 108.0 a 89.0 c 24.1 a 7.9 b
DAHM 557.1 a 95.4 a 92.5 b 21.2 b 5.3 c
吉粳88 CK 394.4 a 104.5 b 96.0 a 20.2 a 9.0 a
Jijing 88 DAH10 436.4 a 127.6 ab 92.6 b 20.1 a 7.4 b
DAH20 378.7 a 132.2 a 91.3 b 19.2 a 7.3 b
DAHM 408.9 a 127.6 ab 95.5 a 18.7 a 5.3 c
粮粳10号 CK 395.2 a 96.5 a 95.7 a 24.6 a 8.1 a
Liangjing 10 DAH10 382.6 a 99.9 a 92.8 a 24.6 a 7.9 ab
DAH20 334.8 a 100.1 a 85.5 b 22.0 a 7.4 ab
DAHM 413.2 a 89.8 a 92.8 a 22.0 a 7.0 b
吉粳515 CK 397.5 ab 112.1 a 95.5 a 22.6 a 8.5 a
Jijing 515 DAH10 409.5 a 103.3 a 89.0 b 20.3 b 7.7 b
DAH20 382.7 a 102.3 a 88.3 b 20.3 b 7.2 c
DAHM 397.9 a 100.8 a 93.0 a 19.8 b 6.5 d
方差分析ANOVA (P-value)
处理Treatment (T) 0.51 0.61 0.00** 0.00** 0.00**
品种Cultivar (C) 0.95 0.00** 0.00** 0.00** 0.29
年份Year (Y) 0.00** 0.00** 0.00** 0.00** 0.03*
处理×品种 T×C 0.55 0.10 0.00** 0.01** 0.11
处理×年份 T×Y 0.71 0.11 0.00** 0.05* 0.00**
品种×年份 C×Y 0.10 0.19 0.00** 0.00** 0.53
处理×品种×年份 T×C×Y 0.05* 0.08 0.00** 0.00** 0.14

图2

齐穗后不同遮阴时长对水稻籽粒蛋白质含量(A)和直链淀粉含量(B)的影响 不同处理的缩写同表1。柱形图同一组数据上方的小写字母表示同一年同一水稻品种不同处理间在0.05概率水平差异显著。"

表3

齐穗后不同遮阴时长对水稻外观品质的影响"

品种
Cultivar
处理
Treatment
2018 2019
垩白粒率
Chalky grain rate
垩白度
Chalkiness
垩白粒率
Chalky grain rate
垩白度
Chalkiness
新稻41号 CK 2.4 c 0.6 c 1.9 d 0.6 c
Xindao 41 DAH10 9.8 a 2.8 a 6.9 b 2.7 a
DAH20 5.9 b 1.3 b 8.8 a 2.6 a
DAHM 0.9 d 0.2 c 4.1 c 1.4 b
吉粳88 CK 4.1 a 1.3 b 3.9 d 1.6 d
Jijing 88 DAH10 6.2 a 2.4 a 13.7 b 5.8 b
DAH20 5.5 a 2.6 a 28.6 a 15.4 a
DAHM 4.6 a 1.9 ab 7.8 c 3.9 c
粮粳10号 CK 3.2 a 0.8 a 4.6 c 1.5 c
Liangjing 10 DAH10 3.4 a 1.0 a 8.4 b 3.0 b
DAH20 3.3 a 0.8 a 13.0 a 4.8 a
DAHM 0.6 b 0.3 b 6.0 c 2.1 c
吉粳515 CK 4.9 b 1.7 b 8.3 d 3.2 d
Jijing 515 DAH10 17.4 a 8.7 a 21.9 b 10.5 b
DAH20 5.3 b 2.2 b 32.9 a 19.7 a
DAHM 6.1 b 2.8 b 13.7 c 7.3 c
方差分析ANOVA (P-value)
处理Treatment (T) 0.00** 0.00**
品种Cultivar (C) 0.00** 0.00**
年份Year (Y) 0.00** 0.00**
处理×品种 T×C 0.00** 0.00**
处理×年份 T×Y 0.00** 0.00**
品种×年份 C×Y 0.00** 0.00**
处理×品种×年份 T×C×Y 0.00** 0.00**

表4

齐穗后遮阴时长对水稻籽粒糊化特性和食味值的影响"

品种
Cultivar
处理
Treatment
峰值黏度
Peak
viscosity
(cP)
热浆黏度
Hot viscosity
(cP)
崩解值
Breakdown
(cP)
最终黏度
Final
viscosity
(cP)
消减值
Setback
(cP)
起始糊化温度
Pasting
temperature
(℃)
食味值
Taste value
(%)
2018
新稻41号 CK 2636.7 a 1448.7 a 1188.0 a 2556.0 a -80.7 c 83.8 a 87.3 a
Xindao 41 DAH10 2387.7 b 1310.3 b 1077.3 a 2372.0 b -15.7 bc 88.3 a 86.7 a
DAH20 2114.3 c 1209.7 c 904.7 b 2230.3 c 116.0 ab 88.8 a 83.3 b
DAHM 2042.7 c 1134.3 d 908.3 b 2201.3 c 158.7 a 89.4 a 81.3 c
吉粳88 CK 2969.3 a 1560.7 a 1408.7 a 2823.3 a -146.0 c 73.1 b 87.0 a
Jijing 88 DAH10 2566.3 b 1381.7 b 1184.7 b 2515.7 b -50.7 b 82.2 a 84.7 b
DAH20 2476.3 b 1316.7 b 1159.7 b 2413.3 b -63.0 b 87.7 a 83.3 c
DAHM 2005.3 c 1101.3 c 904.0 c 2117.0 c 111.7 a 88.5 a 81.3 d
粮粳10号 CK 2421.7 a 1398.3 a 1023.3 a 2696.7 a 275.0 c 87.7 b 85.3 a
Liangjing 10 DAH10 2393.3 a 1338.7 a 1054.7 a 2601.3 a 208.0 d 88.0 b 86.3 a
DAH20 1955.0 b 1174.0 b 781.0 b 2346.0 b 391.0 b 89.9 a 83.0 b
DAHM 1558.7 c 994.7 c 574.3 c 2106.7 c 536.0 a 90.4 a 82.3 b
吉粳515 CK 2886.7 a 1654.0 a 1232.7 a 2888.0 a 1.3 b 73.1 b 86.3 a
Jijing 515 DAH10 2668.3 b 1549.0 b 1119.3 b 2677.7 b 9.3 b 77.9 ab 87.3 a
DAH20 2324.3 c 1338.7 c 985.7 c 2444.7 c 120.3 a 82.1 ab 82.0 b
DAHM 2140.3 d 1243.7 d 896.7 c 2301.3 d 161.0 a 88.6 a 80.7 b
2019
新稻41号 CK 3220.0 a 1783.5 a 1436.5 a 3117.7 a -102.3 c 88.9 a 87.3 a
Xindao 41 DAH10 3075.5 ab 1679.3 ab 1396.3 ab 3125.5 a 50.0 b 84.7 b 87.0 a
DAH20 2947.3 b 1653.3 b 1294.0 bc 3012.3 a 65.0 b 89.3 a 85.7 b
DAHM 2656.0 c 1449.0 c 1207.0 c 2959.3 a 303.3 a 90.4 a 81.3 c
吉粳88 CK 2991.0 a 1652.5 a 1338.5 a 3511.5 a 520.5 a 89.4 c 84.3 a
Jijing 88 DAH10 2906.0 a 1605.5 a 1300.5 a 3382.0 a 476.0 a 90.3 ab 85.0 a
DAH20 2625.7 b 1483.7 b 1142.0 b 3057.0 b 431.3 a 89.9 bc 80.3 b
DAHM 2236.0 c 1305.7 c 930.3 c 2666.3 c 430.3 a 90.7 a 75.0 c
粮粳10号 CK 3051.0 a 1798.3 a 1252.7 a 3502.0 a 451.0 a 89.0 b 86.3 a
Liangjing 10 DAH10 2891.7 ab 1734.0 a 1157.7 ab 3436.0 ab 544.3 a 89.6 b 85.7 a
DAH20 2767.0 b 1713.7 a 1053.3 bc 3362.5 b 595.5 a 89.5 b 83.0 b
DAHM 2320.0 c 1401.5 b 918.5 c 3001.2 c 681.2 a 91.1 a 75.7 c
吉粳515 CK 2674.0 a 1524.7 a 1149.3 ab 3187.3 a 513.3 a 89.5 a 86.0 a
Jijing 515 DAH10 2818.0 a 1605.0 a 1213.0 a 3129.0 a 311.0 b 79.0 b 84.7 b
DAH20 2720.0 a 1535.7 a 1184.3 ab 3080.0 a 360.0 ab 89.1 a 82.7 c
DAHM 2467.3 b 1396.0 b 1071.3 b 2739.7 b 272.3 b 88.3 a 79.0 d
方差分析ANOVA (P-value)
处理Treatment (T) 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0**
品种Cultivar (C) 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0**
年份Year (Y) 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0**
处理×品种 T×C 0.00** 0.00** 0.00** 0.00** 0.00** 0.08 0**
处理×年份 T×Y 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.09
品种×年份 C×Y 0.00** 0.01** 0.00** 0.02* 0.00** 0.07 0**
处理×品种×年份 T×C×Y 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0**

表5

主要稻米品质间相关系数"

指标
Index
食味值
Taste quality
蛋白质
Protein
直链淀粉
Amylose content
垩白粒率Chalky grain rate 垩白度
Chalkiness
峰值黏度
Peak
viscosity
热浆黏度
Hot
viscosity
崩解值
Breakdown
最终黏度
Final
viscosity
消减值
Setback
蛋白质
Protein
-0.932**
直链淀粉
Amylose content
0.475** -0.503**
垩白粒率
Chalky grain rate
-0.110 0.206* -0.591**
垩白度
Chalkiness
-0.160 0.262** -0.595** 0.983**
峰值黏度
Peak viscosity
0.521** -0.507** -0.338** 0.235* 0.188
热浆黏度
Hot viscosity
0.462** -0.442** -0.419** 0.263** 0.209* 0.954**
崩解值
Breakdown
0.533** -0.526** -0.216* 0.180 0.147 0.948** 0.810**
最终黏度
Final viscosity
0.223* -0.260* -0.632** 0.334** 0.288** 0.827** 0.899** 0.667**
消减值
Setback
-0.443** 0.357** -0.571** 0.212* 0.206* -0.147 0.052 -0.345** 0.434**
起始糊化温度
Pasting temperature
-0.368** 0.345** -0.267** -0.024 -0.018 -0.271** -0.214* -0.304** 0.032 0.492**
[1] 国家统计局. 2021中国统计年鉴. 北京: 中国统计出版社, 2021. pp 399-401.
National Bureau of Statistics of China. 2021 China statistical yearbook. Beijing: China Statistics Press, 2021. pp 399-401. (in Chinese)
[2] FAO. Crops and livestock products. [2021-12-23]. https://www.fao.org/faostat/zh/#data/QCL.
[3] Kong X L, Zhu P, Sui Z Q, Bao J S. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem, 2015, 172: 433-440.
doi: 10.1016/j.foodchem.2014.09.085 pmid: 25442575
[4] Bao J S. Toward understanding the genetic and molecular bases of the eating and cook king qualities of rice. Cereal Food World, 2012, 57: 148-156.
[5] 程方民, 钟连进. 不同气候生态条件下稻米品质性状的变异及主要影响因子分析. 中国水稻科学, 2001, 15: 187-191.
Cheng F M, Zhong L J. Variation of rice quality traits under different climate conditions and its main affected factors. Chin J Rice Sci, 2001, 15: 187-191. (in Chinese with English abstract)
[6] Seneviratne S I, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, Ghosh S, Iskandar I, Kossin J, Lewis S, Otto F, Pinto I, Satoh M, Vicente-Serrano S M, Wehner M, Zhou B. Weather and climate extreme events in a changing climate. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B, eds. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. pp 2771-3142.
[7] 中国气象局气候变化中心. 中国气候变化蓝皮书2021. 北京: 科学出版社, 2021.
CMA Climate Change Centre. Blue Book on Climate Change in China (2021). Beijing: Science Press, 2021. (in Chinese)
[8] 凌霄霞, 张作林, 翟景秋, 叶树春, 黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45: 323-334.
doi: 10.3724/SP.J.1006.2019.82044
Ling X X, Zhang Z L, Zhai J Q, Ye S C, Huang J L. A review for impacts of climate change on rice production in China. Acta Agron Sin, 2019, 45: 323-334. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.82044
[9] Wei X, Zhang Z, Shi P J, Wang P, Chen Y, Song X, Tao F L. Is yield increase sufficient to achieve food security in China? PLoS One, 2015, 10: e116430.
[10] Zhang T, Yang X, Wang H, Li Y, Ye Q. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis. Glob Change Biol, 2014, 20: 1289-1298.
doi: 10.1111/gcb.2014.20.issue-4
[11] Emmanuel G A, Mary D M. Effect of light intensity on growth and yield of a Nigerian local rice variety-ofada. Int J Prod Res, 2014, 4: 89-94.
[12] 罗亢, 曾勇军, 胡启星, 陈乐, 易艳红, 睢峰, 黎星. 不同时期弱光胁迫对晚稻不同耐弱光品种源库特征及叶片保护酶活性的影响. 中国水稻科学, 2018, 32: 581-590.
doi: 10.16819/j.1001-7216.2018.7146
Luo K, Zeng Y J, Hu Q X, Chen L, Yi Y H, Sui F, Li X. Effects of weak light stress at different stages on sink-source characteristics and protective enzyme activities in leaf of late rice varieties with different tolerance. Chin J Rice Sci, 2018, 32: 581-590. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2018.7146
[13] 张巫军, 段秀建, 姚雄, 刘强明, 肖人鹏, 张现伟, 唐永群, 文明, 李经勇. 遮阴对重穗型杂交水稻茎秆形态特征和抗倒伏性的影响. 中国稻米, 2020, 26(2): 9-13.
doi: 10.3969/j.issn.1006-8082.2020.02.003
Zhang W J, Duan X J, Yao X, Liu Q M, Xiao R P, Zhang X W, Tang Y Q, Wen M, Li J Y. Effects of shading on stem morphological traits and lodging resistance in heavy type panicle of indica rice. China Rice, 2020, 26(2): 9-13. (in Chinese with English abstract)
[14] 任万军, 杨文钰, 徐精文, 樊高琼, 马周华. 弱光对水稻籽粒生长及品质的影响. 作物学报, 2003, 29: 785-790.
Ren W J, Yang W Y, Xu J W, Fan G Q, Ma Z H. Effect of low light on grains growth and quality in rice. Acta Agron Sin, 2003, 29: 785-790. (in Chinese with English abstract)
[15] 王成孜, 高丽敏, 孙玉明, 王博, 郭世伟. 弱光胁迫对分蘖期超级稻与常规稻叶片光合特性的影响. 南京农业大学学报, 2019, 42: 111-117.
Wang C Z, Gao L M, Sun Y M, Wang B, Guo S W. The effect of weak light stress on leaf photosynthetic characteristics in super hybrid rice and conventional rice at tillering stage. J Nanjing Agric Univ, 2019, 42: 111-117. (in Chinese with English abstract)
[16] 李睿, 宗晨, 娄运生, 张震, 马莉, 李君. 不同水分管理和遮阴下水稻株高及成熟期高光谱估算. 江苏农业科学, 2021, 49(3): 82-90.
Li R, Zong C, Lou Y S, Zhang Z, Ma L, Li J. Hyperspectral estimation of rice plant height and maturity period under different water management and shading. Jiangsu Agric Sci, 2021, 49(3): 82-90. (in Chinese with English abstract)
[17] 陈宇眺, 闫川, 洪晓富. 花前、花后遮阴对籼粳杂交稻产量形成特性的影响. 中国稻米, 2019, 25(5): 79-83.
doi: 10.3969/j.issn.1006-8082.2019.05.017
Chen Y T, Yan C, Hong X F. Effects of shading before and after flowering stage on yield formation characters of indica-japonica hybrid rice. China Rice, 2019, 25(5): 79-83. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-8082.2019.05.017
[18] Wei H Y, Zhu Y, Qiu S, Han C, Hu L, Xu D, Zhou N, Xing Z, Hu Y, Cui P, Dai Q, Zhang H. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J Integr Agric, 2018, 17: 2405-2417.
doi: 10.1016/S2095-3119(18)62025-8
[19] Deng F, Li Q P, Chen H, Zeng Y L, Li B, Zhong X Y, Wang L, Ren W J. Relationship between chalkiness and the structural and thermal properties of rice starch after shading during grain-filling stage. Carbohydr Polym, 2021, 252: 117212.
doi: 10.1016/j.carbpol.2020.117212
[20] 杜彦修, 晏云, 季新, 李飞, 李丹阳, 孙红正, 张静, 李俊周, 彭廷, 赵全志. 沿黄稻区水稻灌浆期遮阴对产量和品质的影响及耐弱光粳稻品种筛选. 植物遗传资源学报, 2019, 20: 1160-1169.
Du Y X, Yan Y, Ji X, Li F, Li D Y, Sun H Z, Zhang J, Li J Z, Peng T, Zhao Q Z. Effects of shading on yield and quality of japonica rice varieties in rice-growing regions alongside the yellow river during grain-filling stage and screening of low-light tolerance. J Plant Genet Resour, 2019, 20: 1160-1169. (in Chinese with English abstract)
[21] 董明辉, 惠锋, 顾俊荣, 陈培峰, 杨代凤, 乔中英. 灌浆期不同光强对水稻不同粒位籽粒品质的影响. 中国生态农业学报, 2013, 21: 164-170.
Dong M H, Hui F, Gu J R, Chen P F, Yang D F, Qiao Z Y. Effect of light intensity on grain quality of rice at different spike positions during grain-filling stage. Chin J Eco-Agric, 2013, 21: 164-170 (in Chinese with English abstract.)
[22] Liu K, Yang R, Lu J, Wang X, Lu B, Tian X, Zhang Y. Radiation use efficiency and source-sink changes of super hybrid rice under shade stress during grain-filling stage. Agron J, 2019, 111: 1788-1798.
doi: 10.2134/agronj2018.10.0662
[23] 张诚信, 郭保卫, 唐健, 许方甫, 许轲, 胡雅杰, 邢志鹏, 张洪程, 戴其根, 霍中洋, 魏海燕, 黄丽芬, 陆阳, 唐闯, 戴琪星, 周苗, 孙君仪. 灌浆结实期低温弱光复合胁迫对稻米品质的影响. 作物学报, 2019, 45: 1208-1220.
doi: 10.3724/SP.J.1006.2019.82067
Zhang C X, Guo B W, Tang J, Xu F F, Xu K, Hu Y J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Wei H Y, Huang L F, Lu Y, Tang C, Dai Q X, Zhou M, Sun J Y. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality. Acta Agron Sin, 2019, 45: 1208-1220. (in Chinese with English abstract)
[24] 孙园园, 孙永健, 陈林, 徐徽, 马均. 不同播期和抽穗期弱光胁迫对杂交稻生理性状及产量的影响. 应用生态学报, 2012, 23: 2737-2744.
Sun Y Y, Sun Y J, Chen L, Xu H, Ma J. Effects of different sowing dates and low-light stress at heading stage on the physiological characteristics and grain yield of hybrid rice. Chin J Appl Ecol, 2012, 23: 2737-2744. (in Chinese with English abstract)
[25] 刘博, 韩勇, 解文孝, 李建国, 刘军, 高岐. 灌浆结实期弱光对水稻产量、生理及品质的影响. 中国稻米, 2008, (5): 36-40.
Liu B, Han Y, Xie W X, Li J G, Liu J, Gao Q. Effect of weak light on yield, physiology and quality of rice at grain filling stage. China Rice, 2008, (5): 36-40. (in Chinese with English abstract)
[26] 刘佳. 灌浆结实期弱光对水稻籽粒氮代谢关键酶活性及营养品质的影响. 四川农业大学硕士学位论文, 四川成都, 2010.
Liu J. Effects of Low Light on Key Enzymes Activities of Nitrogen Metabolism and Nutritional Quality in Rice during Grain-filling Stage. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2010. (in Chinese with English abstract)
[27] Kobata T, Sugawara M, Takatu S. Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agron J, 2000, 92: 411-417.
doi: 10.2134/agronj2000.923411x
[28] 吕军, 王伯伦, 孟维韧, 赵凤艳. 不同穗型粳稻的光合作用与物质生产特性. 中国农业科学, 2007, 40: 902-908.
Lyu J, Wang B L, Meng W R, Zhao F Y. The characteristics of photosynthesis and dry matter production in japonica rice cultivars with different type panicles. Sci Agric Sin, 2007, 40: 902-908. (in Chinese with English abstract)
[29] 杜彦修, 季新, 张静, 李俊周, 孙红正, 赵全志. 弱光对水稻生长发育影响研究进展. 中国生态农业学报, 2013, 21: 1307-1317.
Du Y X, Ji X, Zhang J, Li J Z, Sun H Z, Zhao Q Z. Research progress on the impacts of low light intensity on rice growth and development. Chin J Eco-Agric, 2013, 21: 1307-1317. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2013.01307
[30] Yoshinaga S, Takai T, Arai-Sanon S Y, Ishimaru T, Kondo M. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crops Res, 2013, 150: 74-82.
doi: 10.1016/j.fcr.2013.06.004
[31] Li Q P, Deng F, Chen H, Zeng Y L, Li B, Zhong X Y, Wang L, Zhou W, Chen Y, Ren W J. Shading decreases rice yield by impeding grain-filling progress after heading. Agron J, 2020, 112: 4018-4030.
doi: 10.1002/agj2.v112.5
[32] 邓飞, 王丽, 姚雄, 王建军, 任万军, 杨文钰. 不同生育阶段遮阴对水稻籽粒充实和产量的影响. 四川农业大学学报, 2009, 27: 265-269.
Deng F, Wang L, Yao X, Wang J J, Ren W J, Yang W Y. Effects of different-growing-stage shading on rice grain-filling and yield. J Sichuan Agric Univ, 2009, 27: 265-269. (in Chinese with English abstract)
[33] 蔡昆争, 骆世明. 不同生育期遮光对水稻生长发育和产量形成的影响. 应用生态学报, 1999, 10: 193-196.
Cai K J, Luo S M. Effect of shading on growth, development and yield formation of rice. Chin J Appl Ecol, 1999, 10: 193-196. (in Chinese with English abstract)
[34] 曾研华. 低温诱导籼粳杂交稻灌浆结实障碍特性研究. 南京农业大学博士学位论文, 江苏南京, 2015.
Zeng Y H. Study on Mechanism of Grain Filling Obstacle Induced Low Temperature of Indica-japonica Hybrid Rice. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015. (in Chinese with English abstract)
[35] Deng F, Li B, Yuan Y J, He C Y, Zhou X, Li Q P, Zhu Y Y, Huang X F, He Y X, Ai X F, Tao Y F, Zhou W, Wang L, Cheng H, Chen Y, Wang M T. Ren W J. Increasing the number of seedlings per hill with reduced number of hills improves rice grain quality by optimizing canopy structure and light utilization under shading stress. Field Crops Res, 2022, 287: 108668.
doi: 10.1016/j.fcr.2022.108668
[36] Chen H, Li Q P, Zeng Y L, Deng F, Ren W J. Effect of different shading materials on grain yield and quality of rice. Sci Rep, 2019, 9: 9992.
doi: 10.1038/s41598-019-46437-9 pmid: 31292505
[37] 贺浩华, 彭小松, 刘宜柏. 环境条件对稻米品质的影响. 江西农业学报, 1997, 9(4): 66-72.
He H H, Peng X S, Liu Y B. Effects of environmental conditions on rice quality. Acta Agric Jiangxi, 1997, 9(4): 66-72. (in Chinese with English abstract)
[38] 胡培松, 翟虎渠, 唐绍清, 万建民. 利用RVA快速鉴定稻米蒸煮及食味品质的研究. 作物学报, 2004, 30: 519-524.
Hu P S, Zhai H Q, Tang S Q, Wan J M. Rapid evaluation of rice cooking and palatability quality by RVA profile. Acta Agron Sin, 2004, 30: 519-524. (in Chinese with English abstract)
[39] 隋炯明, 李欣, 严松, 严长杰, 张蓉. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38: 657-663.
Sui J M, Li X, Yan S, Yan C J, Zhang R. Studies on the Rice RVA Profile Characteristics and Its Correlation with the Quality. Sci Agric Sin, 2005, 38: 657-663. (in Chinese with English abstract)
[40] 李冲, 王学春, 杨国涛, 陈虹, 赵祥, 王汝丹, 黄苗, 彭友林, 陈永军, 胡运高. 杂交水稻产量及稻米品质对弱光胁迫的响应. 应用与环境生物学报, 2022, 28: 1415-1421.
Li C, Wang X C, Yang G T, Chen H, Zhao X, Wang R D, Huang M, Peng Y L, Chen Y J, Hu Y G. Response of the grain yield and its quality of hybrid rice to weak light stress. Chin J Appl Environ Biol, 2022, 2022, 28: 1415-1421. (in Chinese with English abstract)
[41] 姜楠. 遮光对北方粳稻产量和品质的形成及其生理机制的研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2013.
Jiang N. Study on Development of Yield and Quality and Its Physiological Mechanism of Japanica Rice under Shading in Northern China. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2013. (in Chinese with English abstract)
[1] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[2] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[3] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 侯新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[4] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[5] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[6] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[7] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[8] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王晨阳, 王丽芳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[9] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[10] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[11] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[12] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[13] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[14] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[15] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .