作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2144-2159.doi: 10.3724/SP.J.1006.2023.22043
韦新宇1,3(), 曾跃辉1,3(), 杨旺兴2,3, 肖长春1,3, 候新坡2,3, 黄建鸿1,3, 邹文广2,3, 许旭明2,3,*()
WEI Xin-Yu1,3(), ZENG Yue-Hui1,3(), YANG Wang-Xing2,3, XIAO Chang-Chun1,3, HOU Xin-Po2,3, HUANG Jian-Hong1,3, ZOU Wen-Guang2,3, XU Xu-Ming2,3,*()
摘要:
稻米香味是水稻的重要食味品质之一, 其主要受第8染色体上编码甜菜碱脱氢酶基因Badh2控制, 该基因突变可导致香味物质2-乙酰-1-吡咯啉(2-AP)的含量增加从而促进香味的产生。本研究以三明市农业科学研究院自主选育的优质籼型杂交稻保持系明太B为受体, 利用CRISPR-Cas9技术对其Badh2基因进行编辑和敲除。获得2个T0代转基因纯合突变体植株并对其衍生的48个T1代单株进行鉴定和分析, 获得1个不含转基因载体骨架且在第2外显子插入单个碱基T的纯合突变体株系明太B-badh2。利用半定量PCR和qRT-PCR技术以及气相色谱质谱联用仪(GC-MS)检测Badh2基因相对表达量和2-AP含量; 同时采用农业行业标准(NY/T 1433-2014)推荐的48对水稻SSR引物进行指纹图谱分析。结果表明, 该株系Badh2基因RNA表达水平显著下调; 籽粒中香味物质2-AP的含量显著增加; 指纹图谱分析发现, 仅1对引物Rm571在野生型和突变体之间鉴定到等位变异, 两组材料遗传差异较小。此外, 本研究还对野生型和突变体T2代植株表型性状、稻米蒸煮食味品质和外观品质指标进行了考察和测定分析。结果表明, 所有指标在两组材料间均无显著差异。进一步采用测交和回交转育方法并结合Badh2位点测序分析, 成功选育获得了其对应的纯合香型三系不育系明太A-badh2。通过与恢复系明恢703、明恢3009测配, 其组合产量与国家审定品种明太优703、明太优3009相近且表现出较强的超标优势。此外, 通过与香型恢复系明恢1831测配后发现其组合籽粒中香味物质2-AP含量极显著高于对照组合明太A/明恢1831。因此, 利用CRISPR-Cas9基因编辑技术, 可对水稻香味基因Badh2进行精准定向编辑和敲除, 实现对水稻香味性状的改良, 为创制香型籼稻不育系提供理论指导, 从而加快香型杂交稻育种进程。
[1] | 王春萍, 张现伟, 白文钦, 蒋晓英, 吴红, 林清, 唐永群, 姚雄, 张巫军, 唐荣莉, 李经勇, 雷开荣. 新型香稻渝恢2103香味分子遗传特性分析. 作物学报, 2017, 43: 1499-1506. |
Wang C P, Zhang X W, Bai W Q, Jiang X Y, Wu H, Lin Q, Tang Y Q, Yao X, Zhang W J, Tang R L, Li J Y, Lei K R. Molecular genetic characters of fragrance in a new fragrant rice variety Yuhui 2103. Acta Agron Sin, 2017, 43: 1499-1506. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01499 |
|
[2] |
Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell, 2008, 20: 1850-1861.
doi: 10.1105/tpc.108.058917 pmid: 18599581 |
[3] |
Bradbury L M T, Henry R J, Jin Q S, Reinke R F, Waters D L E. A perfect marker for fragrance genotyping in rice. Mol Breed, 2005, 16: 279-283.
doi: 10.1007/s11032-005-0776-y |
[4] | 张江丽, 李苏洁, 李娟, 普世皇, 普玉娇, 张亮, 谭亚玲, 陈丽娟, 谭学林, 金寿林, 文建成. 不同来源水稻种质资源香味基因badh2位点的鉴定. 分子植物育种, 2015, 13: 727-733. |
Zhang J L, Li S J, Li J, Pu S H, Pu Y J, Zhang L, Tan Y L, Chen L J, Tan X L, Jin S L, Wen J C. Identification of the fragrant gene badh2 locus in rice germplasm resources original from different area. Mol Plant Breed, 2015, 13: 727-733. (in Chinese with English abstract) | |
[5] |
曾跃辉, 韦新宇, 黄建鸿, 肖长春, 张锐, 尚伟, 许旭明. 不同来源特种稻香味和黑色种皮基因的鉴定与遗传特性分析. 植物遗传资源学报, 2021, 22: 951-962.
doi: 10.13430/j.cnki.jpgr.20201218001 |
Zeng Y H, Wei X Y, Huang J H, Xiao C C, Zhang R, Shang W, Xu X M. Identification and genetic analysis of the genes for fragrance and black pericarp in special rice from different regions. J Plant Genet Resour, 2021, 22: 951-962. (in Chinese with English abstract) | |
[6] |
Shi W W, Yang Y, Chen S H, Xu M L. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed, 2008, 22: 185-192.
doi: 10.1007/s11032-008-9165-7 |
[7] |
Shao G N, Tang A, Tang S Q, Luo J, Jiao G A, Wu J L, Hu P S. A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice. Plant Breed, 2011, 130: 172-176.
doi: 10.1111/pbr.2011.130.issue-2 |
[8] | Bradbury L M T, Gillies S A, Brushett D J, Waters D L, Henry R J. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol, 2008, 68: 609-616. |
[9] |
Bradbury L M T, Fitzgerald T L, Henry R J, Jin Q S, Waters D L E. The gene for fragrance in rice. Plant Biotechnol J, 2005, 3: 363-370.
doi: 10.1111/j.1467-7652.2005.00131.x pmid: 17129318 |
[10] |
Sakthivel K, Sundaram R M, Shobha R N, Balachandran S M, Neeraja C N. Genetic and molecular basis of fragrance in rice. Biotechnol Adv, 2009, 27: 468-473.
doi: 10.1016/j.biotechadv.2009.04.001 pmid: 19371779 |
[11] |
Okpala N E, Mo Z, Duan M, Tang X. The genetics and biosynthesis of 2-acetyl-1-pyrroline in fragrant rice. Plant Physiol Biochem, 2019, 135: 272-276.
doi: 10.1016/j.plaphy.2018.12.012 |
[12] |
Shao G N, Tang S Q, Chen M L, Wei X J, He J W, Luo J, Jiao G A, Hu Y C, Xie L H, Hu P S. Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics, 2013, 101: 157-162.
doi: 10.1016/j.ygeno.2012.11.010 |
[13] |
Hannon G J. RNA interference. Nature, 2002, 418: 244-251.
doi: 10.1038/418244a |
[14] | Cantos C, Francisco P, Trijatmiko K R, Slamet-Loedin I, Chadha-Mohanty P K. Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci, 2014, 26: 302. |
[15] |
Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas D F, Zheng X, Zhang Y, Gao C. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant, 2013, 6: 1365-1368.
doi: 10.1093/mp/sss162 |
[16] |
Niu X L, Tang W, Huang W Z, Ren G J, Wang Q L, Luo D, Xiao Y Y, Yang S M, Wang F, Lu B R, Gao F Y, Lu T G, Liu Y S. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol, 2008, 8: 100.
doi: 10.1186/1471-2229-8-100 |
[17] |
Chen M L, Wei X J, Shao G N, Tang S Q, Luo J, Hu P S. Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Plant Breed, 2012, 131: 584-590.
doi: 10.1111/pbr.2012.131.issue-5 |
[18] |
Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X. Creation of fragrant rice by targeted knockout of the OsBAHD2 gene using TALEN technology. Plant Biotechnol J, 2015, 13: 791-800.
doi: 10.1111/pbi.2015.13.issue-6 |
[19] |
Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V.Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol, 2015, 32: 76-84.
doi: 10.1016/j.copbio.2014.11.007 |
[20] |
Baltes N J, Voytas D F. Enabling plant synthetic biology through genome engineering. Trends Biotechnol, 2015, 33: 120-131.
doi: 10.1016/j.tibtech.2014.11.008 pmid: 25496918 |
[21] | 邵高能, 谢黎虹, 焦桂爱, 魏祥进, 圣忠华, 唐绍清, 胡培松. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2. 中国水稻科学, 2017, 31: 216-222. |
Shao G N, Xie L H, Jiao G A, Wei X J, Sheng Z H, Tang S Q, Hu P S. CRISPR/Cas9-mediated editing of the fragrant gene Badh2 in rice. Chin J Rice Sci, 2017, 31: 216-222. (in Chinese with English abstract) | |
[22] | 祁永斌, 张礼霞, 王林友, 宋建, 王建军. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2. 中国农业科学, 2020, 53: 1501-1509. |
Qi Y B, Zhang L X, Wang L Y, Song J, Wang J J. CRISPR/Cas 9 targeted editing for the fragrant gene Badh2 in rice. Sci Agric Sin, 2020, 53: 1501-1509. (in Chinese with English abstract) | |
[23] | 应兴华, 徐霞, 陈铭学, 欧阳由男, 朱智伟, 闵捷. 气相色谱-质谱技术分析香稻特征化合物2-乙酰基吡咯啉. 色谱, 2010, 28: 782-785. |
Ying X H, Xu X, Chen M X, Ou-Yang Y N, Zhu Z W, Min J. Determination of 2-acetyl-1-pyrroline in aroma rice using gas chromatography-mass spectrometry. Chromatography, 2010, 28: 782-785. (in Chinese with English abstract) | |
[24] |
彭波, 孙艳芳, 陈报阳, 孙瑞萌, 孔冬艳, 庞瑞华, 李先文, 宋晓华, 李慧龙, 李金涛, 周棋赢, 柳琳, 段斌, 宋世枝. 水稻香味基因及其在育种中的应用研究进展. 植物学报, 2017, 52: 797-807.
doi: 10.11983/CBB16197 |
Peng B, Sun Y F, Chen B Y, Sun R M, Kong D Y, Pang R H, Li X W, Song X H, Li H L, Li J T, Zhou Q Y, Liu L, Duan B, Song S Z. Research progress of fragrance gene and its application in rice breeding. Acta Bot Sin, 2017, 52: 797-807. (in Chinese with English abstract) | |
[25] |
Hinge V R, Patil H B, Nadaf A B.Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice, 2016, 9: 38.
doi: 10.1186/s12284-016-0113-6 |
[26] |
Shi Y Q, Zhao G C, Xu X L, Li J Y. Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice. Mol Breed, 2014, 33: 701-708.
doi: 10.1007/s11032-013-9986-x |
[27] |
He Q, Park Y J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Mol Breed, 2015, 35: 217.
doi: 10.1007/s11032-015-0412-4 |
[28] |
Liao H K, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang C J, Esteban C R, Young J, Belmonte J C L. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun, 2015, 6: 6413.
doi: 10.1038/ncomms7413 |
[29] |
梁敏敏, 张华丽, 陈俊宇, 戴冬青, 杜成兴, 王惠梅, 马良勇. 利用CRISPR/Cas9技术创制抗稻瘟病香型早籼温敏核不育系. 中国水稻科学, 2022, 36: 248-258.
doi: 10.16819/j.1001-7216.2022.211007 |
Liang M M, Zhang H L, Chen J Y, Dai D Q, Du C X, Wang H M, Ma L Y. Developing fragrant early indica TGMS line with blast resistance by using CRISPR/Cas9 technology. Chin J Rice Sci, 2022, 36: 248-258. (in Chinese with English abstract) | |
[30] |
Gaj T, Gersbach C A, Barbas C F. .ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31: 397-405.
doi: 10.1016/j.tibtech.2013.04.004 |
[31] |
Wang H Y, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153: 910-918.
doi: 10.1016/j.cell.2013.04.025 pmid: 23643243 |
[32] |
Mali P, Yang L H, Esvelt K M, Aach J, Guell M, Dicarlo J E, Norville J E, Church G M.RNA-guided human genome engineering via Cas9. Science, 2013, 339: 823-826.
doi: 10.1126/science.1232033 |
[33] |
Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-951.
doi: 10.1038/nbt.2969 pmid: 25038773 |
[34] |
徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻. 中国水稻科学, 2020, 34: 406-412.
doi: 10.16819/j.1001-7216.2020.0104 |
Xu S B, Zheng H L, Liu L F, Bu Q Y, Li X F, Zou D T. Improvement of grain shape and fragrance by using CRISPR/Cas9 system. Chin J Rice Sci, 2020, 34: 406-412 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2020.0104 |
|
[35] |
Endo M, Mikami M, Toki S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol, 2015, 56: 41-47.
doi: 10.1093/pcp/pcu154 pmid: 25392068 |
[36] |
Nawaz G, Usman B, Peng H W, Zhao N, Yuan R Z, Liu Y G, Li R B. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line. Genes, 2020, 11: 735.
doi: 10.3390/genes11070735 |
[37] |
孙慧宇, 宋佳, 王敬国, 刘化龙, 孙健, 莫天宇, 徐善斌, 郑洪亮, 邹德堂. 利用CRISPR/Cas9技术编辑Badh2基因改良粳稻香味. 华北农学报, 2019, 34(4): 1-8.
doi: 10.7668/hbnxb.201751503 |
Sun H Y, Song J, Wang J G, Liu H L, Sun J, Mo T Y, Xu S B, Zheng H L, Zou D T. Editing Badh2 gene to improve the fragrance of japonica rice by CRISPR/Cas9 technology. Acta Agric Boreali-Sin, 2019, 34(4): 1-8. (in Chinese with English abstract) |
[1] | 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571. |
[2] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[3] | 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411. |
[4] | 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038. |
[5] | 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050. |
[6] | 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295. |
[7] | 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941. |
[8] | 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746. |
[9] | 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707. |
[10] | 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479. |
[11] | 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698. |
[12] | 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338. |
[13] | 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349. |
[14] | 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431. |
[15] | 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121. |
|