欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2144-2159.doi: 10.3724/SP.J.1006.2023.22043

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系

韦新宇1,3(), 曾跃辉1,3(), 杨旺兴2,3, 肖长春1,3, 候新坡2,3, 黄建鸿1,3, 邹文广2,3, 许旭明2,3,*()   

  1. 1 三明市农业科学研究院生物技术研究所, 福建 三明 365500
    2 三明市农业科学研究院水稻研究所, 福建 三明 365500
    3 福建省(山区)作物遗传改良与创新利用重点实验室, 福建 三明 365500
  • 收稿日期:2022-07-11 接受日期:2023-02-21 出版日期:2023-08-12 网络出版日期:2023-03-03
  • 通讯作者: 许旭明
  • 作者简介:韦新宇, E-mail: wxy1209@163.com;
    曾跃辉, E-mail: 1_zengyuehui_1@163.com第一联系人:**同等贡献
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-01);福建省自然科学基金项目(2021J01535);福建省自然科学基金项目(2021J01536);三明市科技计划项目(2019-N-4)

Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.)

WEI Xin-Yu1,3(), ZENG Yue-Hui1,3(), YANG Wang-Xing2,3, XIAO Chang-Chun1,3, HOU Xin-Po2,3, HUANG Jian-Hong1,3, ZOU Wen-Guang2,3, XU Xu-Ming2,3,*()   

  1. 1 Biotechnology Research Institute, Sanming Academy of Agricultural Sciences, Sanming 365500, Fujian, China
    2 Rice Research Institute, Sanming Academy of Agricultural Sciences, Sanming 365500, Fujian, China
    3 Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365500, Fujian, China
  • Received:2022-07-11 Accepted:2023-02-21 Published:2023-08-12 Published online:2023-03-03
  • Contact: XU Xu-Ming
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-01);Fujian Provincial Natural Science Foundation(2021J01535);Fujian Provincial Natural Science Foundation(2021J01536);Sanming Municipal Science and Technology Project(2019-N-4)

摘要:

稻米香味是水稻的重要食味品质之一, 其主要受第8染色体上编码甜菜碱脱氢酶基因Badh2控制, 该基因突变可导致香味物质2-乙酰-1-吡咯啉(2-AP)的含量增加从而促进香味的产生。本研究以三明市农业科学研究院自主选育的优质籼型杂交稻保持系明太B为受体, 利用CRISPR-Cas9技术对其Badh2基因进行编辑和敲除。获得2个T0代转基因纯合突变体植株并对其衍生的48个T1代单株进行鉴定和分析, 获得1个不含转基因载体骨架且在第2外显子插入单个碱基T的纯合突变体株系明太B-badh2。利用半定量PCR和qRT-PCR技术以及气相色谱质谱联用仪(GC-MS)检测Badh2基因相对表达量和2-AP含量; 同时采用农业行业标准(NY/T 1433-2014)推荐的48对水稻SSR引物进行指纹图谱分析。结果表明, 该株系Badh2基因RNA表达水平显著下调; 籽粒中香味物质2-AP的含量显著增加; 指纹图谱分析发现, 仅1对引物Rm571在野生型和突变体之间鉴定到等位变异, 两组材料遗传差异较小。此外, 本研究还对野生型和突变体T2代植株表型性状、稻米蒸煮食味品质和外观品质指标进行了考察和测定分析。结果表明, 所有指标在两组材料间均无显著差异。进一步采用测交和回交转育方法并结合Badh2位点测序分析, 成功选育获得了其对应的纯合香型三系不育系明太A-badh2。通过与恢复系明恢703、明恢3009测配, 其组合产量与国家审定品种明太优703、明太优3009相近且表现出较强的超标优势。此外, 通过与香型恢复系明恢1831测配后发现其组合籽粒中香味物质2-AP含量极显著高于对照组合明太A/明恢1831。因此, 利用CRISPR-Cas9基因编辑技术, 可对水稻香味基因Badh2进行精准定向编辑和敲除, 实现对水稻香味性状的改良, 为创制香型籼稻不育系提供理论指导, 从而加快香型杂交稻育种进程。

关键词: 水稻, CRISPR-Cas9, 基因编辑, 香味, Badh2, 2-乙酰-1-吡咯啉(2-AP)

Abstract:

Fragrance is one of the important traits for quality improvement in rice, which is mainly controlled by the Badh2 gene encoding a betaine aldehyde dehydrogenase on chromosome 8. The mutation of Badh2 gene can increase the content of 2-acetyl-1-pyrroline (2-AP) and promote the fragrance production in rice. In this study, the Badh2 gene in Mingtai B (MTB), an elite maintainer line of Indica hybrid rice showing high eating quality bred by Sanming Academy of Agricultural Sciences, was edited and knocked out by using CRISPR-Cas9 technology. Two T0 transgenic lines carrying homozygous mutation on the loci of Badh2 were generated, and 48 T1 individuals derived from these two plants were genotyped by PCR amplification and sequencing analysis. A mutant line named MTB-badh2, which had a single T nucleotide insertion in the second exon of Badh2 without the vector skeleton, was finally obtained. In our study, the expression of Badh2 and the content of 2-AP were determined by semi-quantitative RT-PCR, qRT-PCR, and gas chromatography-mass spectrometry (GC-MS), respectively. Simultaneously, the 48 pairs of SSR markers recommended by “Sector Standard of Agriculture (NY/T 1433-2014)” were used to further analyze the DNA fingerprint and genetic diversity of the MTB and the MTB-badh2. The results showed that the Badh2 RNA level was significantly decreased in the MTB-badh2 compared with the wild-type MTB. In addition, the 2-AP content was dramatically increased in MTB-badh2. DNA fingerprint analysis revealed that only the Rm571 primer pair was specific for identifying allelic variation between wild type and MTB-badh2, suggesting that the genetic diversity between wild type and MTB-badh2 was very low. Furthermore, agronomic phenotype, cooking and eating quality, appearance quality of wild type, and MTB-badh2 were investigated and analyzed. There was no significant difference between MTB and MTB-badh2. The corresponding stable fragrant CMS line Mingtai A-badh2 (MTA-badh2) carrying homozygous mutant on the locus of Badh2 was successfully generated by the conventional test-crossing and back-crossing techniques combined with Badh2 sequencing analysis. Derived from this CMS line, MTA-badh2/Minghui 1831, MTA-badh2/Minghui 703, and MTA-badh2/Minghui 3009 hybrid combinations had been bred. Among them, the grain yield of MTA-badh2/Minghui 703 and MTA-badh2/Minghui 3009 were significantly increased compared with that of Mingtai you 703 and Mingtai you 3009, which were registered and released by the National Crop variety Appraisal Committee. Moreover, MTA-badh2/Minghui 1831 dramatically increased 2-AP content in the grains compared with MTA/Minghui 1831. Therefore, the CRISPR-Cas9-mediated technology could be used to edit the Badh2 and improve the fragrance in rice, and it provides the theoretical guidance for development of fragrant indica CMS line, leading to an accelerated breeding process of fragrant hybrid rice.

Key words: rice, CRISPR-Cas9, gene editing, fragrance, Badh2, 2-acetyl-1-pyrroline (2-AP)

表1

本研究所使用的引物序列"

引物名称 Primer name 引物序列 Primer sequence (5′-3′) 用途Usage
Target1-Fwd GGCATGGCCACGGCGATCCCGCAG 靶序列1构建
Construction of target site 1
Target1-Rev AAACCTGCGGGATCGCCGTGGCCA
Target 2-Fwd GGCAAGGCGAGATCCCGGCGGGCA 靶序列2构建
Construction of target site 2
Target 2-Rev AAACTGGCCACGGCGATCCCGCAG
HPT-F ATTTGTGTACGCCCGACAGT 鉴定HPT
PCR detection in HPT
HPT-R GTGCTTGACATTGGGGAGTT
Cas9 identify-F AGAACCTCTCCGATGCTATCC 鉴定Cas9
PCR detection in Cas9
Cas9 identify-R AGCAAGAGGACCAACGTAG
Badh2Seq-F CAAGGCAGCACAGAACAGA Badh2基因靶点测序检测
Sequencing for target in Badh2
Badh2Seq-R GTAGTCACCACCCTACCTTG
Badh2-Q-F TCCGGGCCAAGTACCTCC Badh2基因qPCR检测
qPCR detection in Badh2
Badh2-Q-R CGTCCATGTCCCATGCTG
Actin-F ACCTTCAACACCCCTGCTAT 内参基因Actin qPCR检测
qPCR detection in Actin (as internal standard)
Actin-R CACCATCACCAGAGTCCAAC

图1

Badh2基因编辑及其突变类型分析 A: Cas9/gRNA载体图; B: Cas9 identify-F/R引物对T0代阳性转基因植株PCR检测; C: HPT-F/R引物对T0代阳性转基因植株PCR检测; D, E: 基因编辑株系T0代单株靶点1和靶点2突变类型分析; F, H: Cas9 identify-F/R引物对T1代基因编辑株系中Cas9基因PCR检测; G, I: HPT-F/R引物对T1代基因编辑株系中HPT基因PCR检测。图A中的LB为载体左边界, UBI为UBI启动子, Cas9为Cas9基因, gRNA为引导RNA, rU6为水稻U6启动子, 35S为35S启动子, Hygro为潮霉素基因, RB为载体右边界。图B和图C中“+”代表阳性对照, “-”代表阴性对照。图D和图E中蓝色字体表示靶点序列, 红色字体表示PAM序列, “-”表示碱基缺失, “+”表示碱基插入。图B、C、F、G、H和I中的M代表2000 bp DNA marker。"

图2

明太B及明太B-badh2中Badh2基因RNA转录水平及香味物质2-AP含量 A, B: Badh2基因在明太B和明太B-badh2中的表达水平; C: 明太B和明太B-badh2中2-AP含量; D, E: 明太B和明太B-badh2总离子色谱图及内标2,4,6-三甲基吡啶。图A中OsActin为水稻内参基因。图B和图C中数据用平均数±标准差表示(t检验: *: P < 0.05, **: P < 0.01), n = 3。图中MTB表示明太B, MTB-badh2表示明太B-badh2。"

图3

表型性状在明太B和明太B-badh2中的表现 A~D: 野生型明太B和突变体明太B-badh2成熟期植株、穗子和谷粒表型比较; E: 株高(cm); F: 结实率(%); G: 穗总粒数; H: 千粒重(g); I: 分蘖数; J: 穗长(cm); K: 剑叶长(cm); L: 剑叶宽(cm); M: 粒长(cm); N: 粒宽(cm); O: 长宽比。图A中标尺表示10 cm; 图B中标尺表示3 cm; 图C和D中标尺表示0.5 cm。图E~O中数据用平均数±标准差表示(t检验: *: P < 0.05, **: P < 0.01), n = 5。MTB: 明太B; MTB-badh2: 明太B-badh2。"

图4

稻米品质在野生型和突变体材料中的表现 A: 胶稠度; B: 碱消值; C: 直链淀粉含量(%); D: 蛋白质含量(%); E: 垩白度; F: 透明度; G: 垩白粒率(%); H: 糙米率(%); I: 精米率(%); J: 整精米率(%)。数据用平均数±标准差表示(t检验: *: P < 0.05, **: P < 0.01), n = 3。MTB: 明太B; MTB-badh2: 明太B-badh2。"

图5

野生型和突变体材料指纹图谱分析 每对SSR引物4个样品, 前2个为明太B, 后2个为明太B-badh2; M: 100 bp DNA ladder marker。"

图6

明太A-badh2配制杂交组合明太A-badh2/明恢1831香味物质2-AP含量 A: 明太A和明太A-badh2植株表型; B: 明太A/明恢1831和明太A-badh2/明恢1831植株表型; C: 明太A/明恢1831, 明太A-badh2/明恢1831和泰国小香占香味物质2-AP含量。图A和B中标尺表示20 cm。图C中数据用平均数±标准差表示, n = 3, 不同字母表示在0.01水平上差异极显著。MTA: 明太A, MTA-badh2: 明太A-badh2, MTA/MH1831: 明太A/明恢1831, MTA-badh2/MH1831: 明太A-badh2/明恢1831, TGXXZ: 泰国小香占。"

表2

明太A-badh2配制杂交组合的主要农艺性状及产量超标优势"

杂交组合
Cross combination
播始历期
Duration from seeding to heading (d)
株高
Plant height
(cm)
穗长
Length of main panicle
(cm)
有效穗
Panicle number per plant
穗粒数
Grain number per panicle
结实率
Seed-settingrate (%)
千粒重
1000-grain weight
(g)
产量
Grain yield
(kg hm-2)
比CK增产
Compared with control (%)
明太A-badh2/明恢703
MTA-badh2/Minghui 703
74.7±0.6 a 113.2±2.5 a 25.5±0.3 A 12.7±0.6 a 210.0±5.0 A 78.1±0.1 a 25.5±0.2 A 10877.0±196.0 A 6.6
明太优703
Mingtaiyou 703
74.7±0.6 a 114.1±1.4 a 25.3±0.2 A 13.0±0.0 a 212.7±5.0 A 77.4±0.4 a 25.3±0.2 A 10843.8±224.2 A 6.3
天优华占(CK)
Tianyouhuazhan (CK)
74.3±0.6 a 110.9±2.2 a 23.8±0.3 B 13.3±0.6 a 193.3±4.2 B 76.6±0.5 b 23.3±0.2 B 10205.7±85.0 B 0.0
明太A-badh2/明恢3009
MTA-badh2/Minghui 3009
75.0±0.0 a 118.4±2.1 a 24.5±0.3 A 12.7±0.6 a 196.3±8.1 A 76.9±0.4 a 25.9±0.4 A 9567.2±139.4 A 6.0
明太优3009
Mingtaiyou 3009
75.3±0.6 a 119.1±2.0 a 24.9±0.3 A 12.3±0.6 a 195.3±6.5 A 77.1±0.7 a 25.5±0.7 A 9549.5±156.7 A 5.8
天优华占(CK)
Tianyouhuazhan (CK)
75.6±0.6 a 111.9±2.4 b 23.0±0.4 B 13.0±0.0 a 171.7±3.1 B 75.3±0.2 b 23.5±0.2 B 9025.5±116.0 B 0.0
[1] 王春萍, 张现伟, 白文钦, 蒋晓英, 吴红, 林清, 唐永群, 姚雄, 张巫军, 唐荣莉, 李经勇, 雷开荣. 新型香稻渝恢2103香味分子遗传特性分析. 作物学报, 2017, 43: 1499-1506.
Wang C P, Zhang X W, Bai W Q, Jiang X Y, Wu H, Lin Q, Tang Y Q, Yao X, Zhang W J, Tang R L, Li J Y, Lei K R. Molecular genetic characters of fragrance in a new fragrant rice variety Yuhui 2103. Acta Agron Sin, 2017, 43: 1499-1506. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01499
[2] Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell, 2008, 20: 1850-1861.
doi: 10.1105/tpc.108.058917 pmid: 18599581
[3] Bradbury L M T, Henry R J, Jin Q S, Reinke R F, Waters D L E. A perfect marker for fragrance genotyping in rice. Mol Breed, 2005, 16: 279-283.
doi: 10.1007/s11032-005-0776-y
[4] 张江丽, 李苏洁, 李娟, 普世皇, 普玉娇, 张亮, 谭亚玲, 陈丽娟, 谭学林, 金寿林, 文建成. 不同来源水稻种质资源香味基因badh2位点的鉴定. 分子植物育种, 2015, 13: 727-733.
Zhang J L, Li S J, Li J, Pu S H, Pu Y J, Zhang L, Tan Y L, Chen L J, Tan X L, Jin S L, Wen J C. Identification of the fragrant gene badh2 locus in rice germplasm resources original from different area. Mol Plant Breed, 2015, 13: 727-733. (in Chinese with English abstract)
[5] 曾跃辉, 韦新宇, 黄建鸿, 肖长春, 张锐, 尚伟, 许旭明. 不同来源特种稻香味和黑色种皮基因的鉴定与遗传特性分析. 植物遗传资源学报, 2021, 22: 951-962.
doi: 10.13430/j.cnki.jpgr.20201218001
Zeng Y H, Wei X Y, Huang J H, Xiao C C, Zhang R, Shang W, Xu X M. Identification and genetic analysis of the genes for fragrance and black pericarp in special rice from different regions. J Plant Genet Resour, 2021, 22: 951-962. (in Chinese with English abstract)
[6] Shi W W, Yang Y, Chen S H, Xu M L. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed, 2008, 22: 185-192.
doi: 10.1007/s11032-008-9165-7
[7] Shao G N, Tang A, Tang S Q, Luo J, Jiao G A, Wu J L, Hu P S. A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice. Plant Breed, 2011, 130: 172-176.
doi: 10.1111/pbr.2011.130.issue-2
[8] Bradbury L M T, Gillies S A, Brushett D J, Waters D L, Henry R J. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol, 2008, 68: 609-616.
[9] Bradbury L M T, Fitzgerald T L, Henry R J, Jin Q S, Waters D L E. The gene for fragrance in rice. Plant Biotechnol J, 2005, 3: 363-370.
doi: 10.1111/j.1467-7652.2005.00131.x pmid: 17129318
[10] Sakthivel K, Sundaram R M, Shobha R N, Balachandran S M, Neeraja C N. Genetic and molecular basis of fragrance in rice. Biotechnol Adv, 2009, 27: 468-473.
doi: 10.1016/j.biotechadv.2009.04.001 pmid: 19371779
[11] Okpala N E, Mo Z, Duan M, Tang X. The genetics and biosynthesis of 2-acetyl-1-pyrroline in fragrant rice. Plant Physiol Biochem, 2019, 135: 272-276.
doi: 10.1016/j.plaphy.2018.12.012
[12] Shao G N, Tang S Q, Chen M L, Wei X J, He J W, Luo J, Jiao G A, Hu Y C, Xie L H, Hu P S. Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics, 2013, 101: 157-162.
doi: 10.1016/j.ygeno.2012.11.010
[13] Hannon G J. RNA interference. Nature, 2002, 418: 244-251.
doi: 10.1038/418244a
[14] Cantos C, Francisco P, Trijatmiko K R, Slamet-Loedin I, Chadha-Mohanty P K. Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci, 2014, 26: 302.
[15] Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas D F, Zheng X, Zhang Y, Gao C. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant, 2013, 6: 1365-1368.
doi: 10.1093/mp/sss162
[16] Niu X L, Tang W, Huang W Z, Ren G J, Wang Q L, Luo D, Xiao Y Y, Yang S M, Wang F, Lu B R, Gao F Y, Lu T G, Liu Y S. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol, 2008, 8: 100.
doi: 10.1186/1471-2229-8-100
[17] Chen M L, Wei X J, Shao G N, Tang S Q, Luo J, Hu P S. Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Plant Breed, 2012, 131: 584-590.
doi: 10.1111/pbr.2012.131.issue-5
[18] Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X. Creation of fragrant rice by targeted knockout of the OsBAHD2 gene using TALEN technology. Plant Biotechnol J, 2015, 13: 791-800.
doi: 10.1111/pbi.2015.13.issue-6
[19] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V.Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol, 2015, 32: 76-84.
doi: 10.1016/j.copbio.2014.11.007
[20] Baltes N J, Voytas D F. Enabling plant synthetic biology through genome engineering. Trends Biotechnol, 2015, 33: 120-131.
doi: 10.1016/j.tibtech.2014.11.008 pmid: 25496918
[21] 邵高能, 谢黎虹, 焦桂爱, 魏祥进, 圣忠华, 唐绍清, 胡培松. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2. 中国水稻科学, 2017, 31: 216-222.
Shao G N, Xie L H, Jiao G A, Wei X J, Sheng Z H, Tang S Q, Hu P S. CRISPR/Cas9-mediated editing of the fragrant gene Badh2 in rice. Chin J Rice Sci, 2017, 31: 216-222. (in Chinese with English abstract)
[22] 祁永斌, 张礼霞, 王林友, 宋建, 王建军. 利用CRISPR/Cas9技术编辑水稻香味基因Badh2. 中国农业科学, 2020, 53: 1501-1509.
Qi Y B, Zhang L X, Wang L Y, Song J, Wang J J. CRISPR/Cas 9 targeted editing for the fragrant gene Badh2 in rice. Sci Agric Sin, 2020, 53: 1501-1509. (in Chinese with English abstract)
[23] 应兴华, 徐霞, 陈铭学, 欧阳由男, 朱智伟, 闵捷. 气相色谱-质谱技术分析香稻特征化合物2-乙酰基吡咯啉. 色谱, 2010, 28: 782-785.
Ying X H, Xu X, Chen M X, Ou-Yang Y N, Zhu Z W, Min J. Determination of 2-acetyl-1-pyrroline in aroma rice using gas chromatography-mass spectrometry. Chromatography, 2010, 28: 782-785. (in Chinese with English abstract)
[24] 彭波, 孙艳芳, 陈报阳, 孙瑞萌, 孔冬艳, 庞瑞华, 李先文, 宋晓华, 李慧龙, 李金涛, 周棋赢, 柳琳, 段斌, 宋世枝. 水稻香味基因及其在育种中的应用研究进展. 植物学报, 2017, 52: 797-807.
doi: 10.11983/CBB16197
Peng B, Sun Y F, Chen B Y, Sun R M, Kong D Y, Pang R H, Li X W, Song X H, Li H L, Li J T, Zhou Q Y, Liu L, Duan B, Song S Z. Research progress of fragrance gene and its application in rice breeding. Acta Bot Sin, 2017, 52: 797-807. (in Chinese with English abstract)
[25] Hinge V R, Patil H B, Nadaf A B.Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice, 2016, 9: 38.
doi: 10.1186/s12284-016-0113-6
[26] Shi Y Q, Zhao G C, Xu X L, Li J Y. Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice. Mol Breed, 2014, 33: 701-708.
doi: 10.1007/s11032-013-9986-x
[27] He Q, Park Y J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Mol Breed, 2015, 35: 217.
doi: 10.1007/s11032-015-0412-4
[28] Liao H K, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang C J, Esteban C R, Young J, Belmonte J C L. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun, 2015, 6: 6413.
doi: 10.1038/ncomms7413
[29] 梁敏敏, 张华丽, 陈俊宇, 戴冬青, 杜成兴, 王惠梅, 马良勇. 利用CRISPR/Cas9技术创制抗稻瘟病香型早籼温敏核不育系. 中国水稻科学, 2022, 36: 248-258.
doi: 10.16819/j.1001-7216.2022.211007
Liang M M, Zhang H L, Chen J Y, Dai D Q, Du C X, Wang H M, Ma L Y. Developing fragrant early indica TGMS line with blast resistance by using CRISPR/Cas9 technology. Chin J Rice Sci, 2022, 36: 248-258. (in Chinese with English abstract)
[30] Gaj T, Gersbach C A, Barbas C F. .ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31: 397-405.
doi: 10.1016/j.tibtech.2013.04.004
[31] Wang H Y, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153: 910-918.
doi: 10.1016/j.cell.2013.04.025 pmid: 23643243
[32] Mali P, Yang L H, Esvelt K M, Aach J, Guell M, Dicarlo J E, Norville J E, Church G M.RNA-guided human genome engineering via Cas9. Science, 2013, 339: 823-826.
doi: 10.1126/science.1232033
[33] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[34] 徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻. 中国水稻科学, 2020, 34: 406-412.
doi: 10.16819/j.1001-7216.2020.0104
Xu S B, Zheng H L, Liu L F, Bu Q Y, Li X F, Zou D T. Improvement of grain shape and fragrance by using CRISPR/Cas9 system. Chin J Rice Sci, 2020, 34: 406-412 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2020.0104
[35] Endo M, Mikami M, Toki S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol, 2015, 56: 41-47.
doi: 10.1093/pcp/pcu154 pmid: 25392068
[36] Nawaz G, Usman B, Peng H W, Zhao N, Yuan R Z, Liu Y G, Li R B. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line. Genes, 2020, 11: 735.
doi: 10.3390/genes11070735
[37] 孙慧宇, 宋佳, 王敬国, 刘化龙, 孙健, 莫天宇, 徐善斌, 郑洪亮, 邹德堂. 利用CRISPR/Cas9技术编辑Badh2基因改良粳稻香味. 华北农学报, 2019, 34(4): 1-8.
doi: 10.7668/hbnxb.201751503
Sun H Y, Song J, Wang J G, Liu H L, Sun J, Mo T Y, Xu S B, Zheng H L, Zou D T. Editing Badh2 gene to improve the fragrance of japonica rice by CRISPR/Cas9 technology. Acta Agric Boreali-Sin, 2019, 34(4): 1-8. (in Chinese with English abstract)
[1] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[4] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[5] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[6] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[7] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[8] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
[9] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[10] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[11] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[12] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[13] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[14] 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431.
[15] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .