欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2225-2239.doi: 10.3724/SP.J.1006.2023.24155

• 耕作栽培·生理生化 • 上一篇    下一篇

不同土壤强化处理对连作太子参生长发育的影响及其效果评价

陈婷1(), 焦艳阳1(), 周鑫烨1, 吴林坤1, 张重义2, 林煜1, 林生1,*(), 林文雄1,*()   

  1. 1 福建农林大学生命科学学院 / 福建省农业生态过程与安全监控重点实验室, 福建福州 350002
    2 福建农林大学农学院 / 福建省高校作物生理与分子生态重点实验室, 福建福州 350002
  • 收稿日期:2022-07-03 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-02-21
  • 通讯作者: 林生,林文雄
  • 作者简介:陈婷, E-mail: iamchenting@126.com
    焦艳阳, E-mail: daniel2zhu@163.com第一联系人:**同等贡献
  • 基金资助:
    国家重点研发计划项目(2017YFE0121800);国家自然科学基金项目(U1205021);国家自然科学基金项目(81573530);福建农林大学校科技创新专项基金项目(CXZX2020037A)

Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system

CHEN Ting1(), JIAO Yan-Yang1(), ZHOU Xin-Ye1, WU Lin-Kun1, ZHANG Zhong-Yi2, LIN Yu1, LIN Sheng1,*(), LIN Wen-Xiong1,*()   

  1. 1 College of Life Sciences, Fujian Agriculture and Forestry University / Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou 350002, Fujian, China
    2 College of Agronomy, Fujian Agriculture and Forestry University / Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, Fuzhou 350002, Fujian, China
  • Received:2022-07-03 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-02-21
  • Contact: LIN Sheng,LIN Wen-Xiong
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2017YFE0121800);National Natural Science Foundation of China(U1205021);National Natural Science Foundation of China(81573530);Science and Technology Innovation Special Fund of Fujian Agriculture and Forestry University(CXZX2020037A)

摘要:

药用植物连作障碍问题威胁着集约化中药农业的源头产品供给与质量安全, 因此, 探索强化修复连作易病土壤的生态修复具有重要的生态经济意义。以块根入药的太子参在集约化种植过程中表现出严重的连作障碍。本研究在两茬太子参之间设置留种、休耕、淹水和稻参轮作4种处理方式, 动态检测不同处理后太子参的光合和抗逆生理以及物质转运差异, 并从土壤生态环境的角度评价不同处理对缓解太子参连作障碍的作用以及探索其机制。研究结果显示, 相较于休耕处理, 稻参轮作处理后的土壤pH降低趋势减缓, 有机质含量显著增加, 太子参根际有益微生物和根际土壤中氮循环基因的丰度均显著增加, 而病原微生物却显著减少; 太子参叶片光合速率显著提升, 干物质运转过程改善; 太子参产量、多糖和总皂苷含量分别显著提升19.5%、22.9%和5.8%。改进的灰色T型关联分析表明, 土壤pH、有机质含量、特异微生物、氮循环基因丰度以及太子参叶片光合速率和抗氧化酶系统均与产量高度关联(关联度绝对值大于0.6), 且太子参块根膨大中期及之前的生育状态和土壤环境的改善对产量形成起到更重要的作用。因此, 苗期、膨大前期及中期是消减太子参连作障碍的关键时期。本研究结果还表明, 稻参轮作处理下, 前作水稻分泌物和残体降解物进入土壤生态系统, 加速特异微生物区系重构, 缓解土壤酸化以及改善营养封存, 降低太子参逆境胁迫强度, 从而在生长发育前期就改善了连作太子参的能量和营养代谢, 并优化了物质转运, 最终改善其产量和品质。该结果为药用植物连作障碍的生态修复, 构建生态可持续栽培关键技术体系提供理论依据。

关键词: 生态集约化, 连作障碍, 太子参, 轮作, 灰色关联分析

Abstract:

Continuous monoculture problems of medicinal plants are threatening the supply and quality safety of the source products in intensive traditional Chinese medicine agricultural practice. Therefore, it is of great ecological and economic significance to intensively explore the ecological restoration of conducive-disease soil. Radix pseudostellariae is a tuberous Chinese medicine that suffers from serious continuous cropping impediments under intensive cultivation. In this study, to evaluate the effects of different treatments on alleviating the continuous cropping obstacle of R. pseudostellariae and uncover the mechanism from the perspective of soil micro-ecological environment, four different soil intensification treatments including tuber reserved, fallow, flooding and rice rotation were set between two crops of R. pseudostellariae, and dynamically detected the changes of photosynthesis, stress-resistance physiology, and dry matter translocation.The results showed that, compared with fallow treatment, rice rotation treatment significantly slowed down the downtrend of soil pH, and the organic matter content in soil. The abundance of beneficial microorganisms and nitrogen cycling genes in the rhizosphere of R. pseudostellariae was increased while the pathogenic microorganisms decreased when rotated with rice in comparison with the fallow regime. This in turn led to significantly increased net photosynthetic rate and improved process of dry matter translocation of R. pseudostellariae under rice rotation treatment, indicating that the yield of R. pseudostellariae and the contents of polysaccharides and total saponins were significantly increased by 19.5%, 22.9%, and 5.8%, respectively. The improved grey T’s correlation degree analysis showed that soil pH, soil organic matter content, the abundance of specific microorganisms, the abundance of nitrogen cycling genes, the photosynthetic rate and antioxidant enzyme system in leaves of R. pseudostellariae were highly correlated with the yield of tuberous roots (Absolute correlation degree >0.6). In addition, the physiological parameters of R. pseudostellariae reflecting the growth status and the improvement of soil environment in middle and pre-phases of tuberous root greatly contributed to high-yielding formation of the medicinal plants when rotated with rice crop. Therefore, the seedling stage, early and middle tuberous root expansion stages of R. pseudostellariae were critical to alleviate the continuous cropping obstacles of R. pseudostellariae. This study also suggested that rice exudates and its residual bio-degradants entering soil ecosystem were conducive to accelerating the reconstruction of specific microflora, alleviating soil acidification, and improving nutrition sequestration after rice rotation treatment, thus resulting in the decreased environmental stress intensity, improved energy and nutrition metabolism, and optimized dry matter allocation in the growth and development prophase, consequently improved yield and quality of the medicinal plants. These results provided a theoretical basis for the ecological remediation of continuous cropping obstacles and the construction of the pivotal technology system in ecological sustainable cultivation practice.

Key words: ecological intensification, continuous cropping obstacles, Radix pseudostellariae, rice rotation, grey correlation analysis

表1

各处理组合的详细信息"

处理
Treatment
缩写
Abbreviation
处理描述
Description for treatments
正茬太子参
Newly plant Radix pseudostellariae
NP 休闲新地第一次种植太子参, 作为对照处理。
Plant Radix pseudostellariae in new farmland as control.
原地留种
Remain tuberous roots in soil as
storage
RP-S 前茬太子参成熟块根作为种参留存于田地中, 该地块来年用于再植太子参, 即相当于三季连作处理。
Tuberous roots of former crop Radix pseudostellariae are left in soil and planted in the next crop.
休耕
Keep soil fallow
RP-F 前茬太子参种植收获后该田块作休闲处理, 下季再种太子参。
Keep soil fallow between two crops of Radix pseudostellariae.
淹水
Submerge soil in water
RP-WF 前作太子参收获后田块作淹水处理, 下一季排水至落干后再种太子参种。
Submerge soil in water between two crop of Radix pseudostellariae, then dry it before next crop.
稻参轮作
Rotate with rice
RP-R 前作太子参收获后轮作水稻, 水稻收获后再种植太子参。
Plant rice between two crops of Radix pseudostellariae.

图1

2019-2020年度太子参土壤处理示意图 NP: 正茬太子参; RP-S: 留种; RP-F: 休耕; RP-WF: 淹水; RP-R: 参稻轮作。"

表2

根际土中有益和有害菌及土壤氮循环基因qPCR特异引物序列"

项目
Item
引物
Primer
序列
Sequences (5°-3°)
马铃薯皮斑病菌Polyscytalum algarvense POL-F GCTGCGTTCTTCATCGATG
POL-R ACATACCTGTTGCCTCGGC
尖孢镰刀菌Fusarium oxysporum ITS1-F CTTGGTCATTTAGAGGAAGTAA
AFP308R CGAATTAACGCGAGTCCCAA
菠萝泛菌Pantoea ananatis PANT-F GAGGTCGCTTCTCTTTGTATGC
PANT-R GCTCGTGTTGTGAAATGTTGG
梅奇酵母属Metschnikowia MET-F TAACAAGGTTTCCGTAGGTGA
MET-R ATTCGCTGCGTTCTTCATC
灰腐质霉Humicola grisea HUM-F CGATGCCAGAACCAAGAGA
HUM-R CCAAACCATTGTGAACATACCT
哈茨木霉Trichoderma harzianum ITS1 S TACAACTCCCAAACCCAATGTGA
ITS1 R CCGTTGTTGAAAGTTTTGATTCATTT
伯克氏菌属Burkholderia Burk3 CTGCGAAAGCCGGAT
Burk R TGCCATACTCTAGCYYGC
假单胞菌属Pseudomonas Ps-for GGTCTGAGAGGATGATCAGT
芽孢杆菌属Bacillus Bac F GGGAAACCGGGGCTAATACCGGAT
R1378 CGGTGTGTACAAGGCCCGGGAACG
AOA 19F ATGGTCTGGCTWAGACG
CrenamoA616r48x GCCATCCABCKRTANGTCCA
AOB amoA-1F CCCCTCKGSAAAGCCTTCTTC
amoA-2R AAAGGYGGWATCGGYAARTCCACCAC
nifH nifH-F AAAGGYGGWATCGGYAARTCCACCAC
nifH-R TTGTTSGCSGCRTACATSGCCATCAT
narG narG1960m2F TAYGTSGGGCAGGARAAACTG
narG2050m2R CGTAGAAGAAGCTGGTGCTGTT
nirK nirK876 ATYGGCGGVCAYGGCGA
nirK1040 GCCTCGATCAGRTTRTGGTT
nirS nirSCd3aFm AACGYSAAGGARACSGG
nirSR3cdm GASTTCGGRTGSGTCTTSAYGAA
nosZ nosZ2F CGCRACGGCAASAAGGTSMSSGT
nosZ2R CAKRTGCAKSGCRTGGCAGAA

表3

不同处理对太子参产量及品质的影响"

处理
Treatment
2020年产量
Yield of the first year
(kg hm-2)
2021年产量
Yield of the second year
(kg hm-2)
多糖含量
Content of polysaccharide
(mg g-1)
总皂苷含量
Content of total saponin
(mg g-1)
NP 3850.69±83.37 a 3771.84±32.92 a 15.15±0.65 a 0.86±0.02 a
RP-S 1010.81±144.40 d 600.64±19.20 c 10.78±0.16 d 0.72±0.02 d
RP-F 2069.74±166.74 c 1230.38±42.56 b 11.53±0.28 d 0.82±0.02 bc
RP-WF 2214.14±83.37 c 1798.67±71.10 a 13.10±0.01 c 0.83±0.01 ab
RP-R 2644.99±79.296 b 1906.13±34.00 a 14.16±0.24 b 0.87±0.01 a

图2

各处理后太子参不同生育期各器官干物质的积累量变化及其分配比例 处理同图1。SS: 苗期; EE: 块根膨大前期; ME: 块根膨大中期; LE: 块根膨大后期; HS: 收获期。不同小写字母表示同一时期不同处理的同一组织干物质含量在P < 0.05水平差异显著。"

图3

不同处理下连作太子参抗氧化酶活性 处理同图1。SS: 苗期; EE: 块根膨大前期; ME: 块根膨大中期; LE: 块根膨大后期; HS: 收获期。"

表4

不同处理下太子参各生育期太子参叶片光合速率"

处理
Treatment
叶片净光合速率Leaf net photosynthetic rate (μmol CO2 m-2 s-1)
块根膨大前期EE 块根膨大中期ME 块根膨大后期LE
NP 11.5±0.2 a 10.9±0.1 a 9.2±0.1 a
RP-S 7.5±0.1 d 6.2±0.1 e 4.1±0.2 e
RP-F 8.4±0.4 c 8.7±0.1 d 5.9±0.2 d
RP-WF 8.4±0.1 c 9.1±0.1 c 6.8±0.1 c
RP-R 9.6±0.3 b 9.7±0.1 b 7.0±0.1 b

图4

不同处理下太子参土壤pH值 BT: 处理前; BP: 第二茬种植前; SS: 苗期; EE: 块根膨大前期; ME: 块根膨大中期; LE: 块根膨大后期。处理同图1。"

图5

不同处理下太子参土壤氮磷钾含量 SS: 苗期; EE: 块根膨大前期; ME: 块根膨大中期; LE: 块根膨大后期。处理同图1。不同小写字母表示同一时期内不同处理间在P < 0.05水平差异显著。"

图6

不同处理下太子参土壤有机质含量 处理同图1。不同小写字母表示不同处理在P < 0.05水平差异显著。"

图7

不同处理下太子参根际土壤关键微生物丰度热图 处理同图1。数据按行进行z-score标准化处理, *表示与正茬相比差异显著。"

图8

不同处理下太子参根际土壤氮循环相关基因丰度差异热图 处理同图1。数据按行进行z-score标准化处理, *表示与正茬相比差异显著。"

图9

灰色关联度分析结果 BT: 处理前; BP: 第二茬种植前; SS: 苗期; EE: 块根膨大前期; ME: 块根膨大中期; LE: 块根膨大后期; HS: 收获期; MO: 微生物相关基因; Gene: 氮循环相关基因。"

[1] Bommarco R, Kleijn D, Potts S G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol, 2013, 28: 230-238.
doi: 10.1016/j.tree.2012.10.012 pmid: 23153724
[2] Tilman D, Balzer C, Hill J, Befort B. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295
[3] 吴凤芝, 赵凤艳, 刘元英. 设施蔬菜连作障碍原因综合分析与防治措施. 东北农业大学学报, 2000, 31: 241-247.
Wu F Z, Zhao F Y, Liu Y Y. On the reasons of continuous cropping obstacles in vegetable facility gardening. J Northeast Agric Univ, 2000, 31: 241-247. (in Chinese with English abstract)
[4] 喻景权, 杜尧舜. 蔬菜设施栽培可持续发展中的连作障碍问题. 沈阳农业大学学报, 2000, 31: 124-126.
Yu J Q, Du Y S. Soil-sickness problem in the sustainable development for the protected production of vegetables. J Shenyang Agric Univ, 2000, 31: 124-126. (in Chinese with English abstract)
[5] 张重义, 林文雄. 药用植物的化感自毒作用与连作障碍. 中国生态农业学报, 2009, 17: 189-196.
Zhang Z Y, Lin W X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chin J Eco-Agric, 2009, 17: 189-196. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2009.00189
[6] Yang Q, Cai X X, Huang M C, Wang S Y. A specific peptide with immunomodulatory activity from Pseudostellaria heterophylla and the action mechanism. J Funct Foods, 2020, 68: 103887.
doi: 10.1016/j.jff.2020.103887
[7] Ng T B, Liu F, Wang H X. The antioxidant effects of aqueous and organic extracts of Panax quinquefolium, Panax notoginseng, Codonopsis pilosula, Pseudostellaria heterophylla and Glehnia littoralis. J Ethnopharmacol, 2004, 93: 285-288.
doi: 10.1016/j.jep.2004.03.040 pmid: 15234766
[8] Wu H M, Lin M H, Christopher R, Qin X J, Zhang S K, Chen J, Wu L K, Zhao Y L, Lin S, Lin W X. Plant-mediated rhizospheric interactions in intraspecific intercropping alleviate the replanting disease of Radix pseudostellariae. Plant Soil, 2020, 454: 411-430.
doi: 10.1007/s11104-020-04659-1
[9] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38: 298-310.
doi: 10.3724/SP.J.1258.2014.00027
Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chin J Plant Ecol, 2014, 38: 298-310. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00027
[10] Mazzola M, Manici L M. Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol, 2012, 50: 45-65.
doi: 10.1146/annurev-phyto-081211-173005 pmid: 22559069
[11] Huang L F, Song L X, Xia X J, Mao W H, Shi K, Zhou Y H, Yu J Q. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol, 2013, 39: 232-242.
doi: 10.1007/s10886-013-0244-9
[12] Chen J, Wu L K, Xiao Z G, Wu Y H, Wu H M, Qin X J, Wang J Y, Wei X Y, Khan M U, Lin S, Lin W X. Assessment of the diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae rhizosphere under monoculture by combining DGGE and quantitative PCR. Front Microbiol, 2017, 8: 1748.
doi: 10.3389/fmicb.2017.01748 pmid: 28966607
[13] Wu H M, Qin X J, Wang J Y, Wu L K, Chen J, Fan J K, Zheng L, Tantai H P, Arafat Y, Lin W W, Luo X M, Lin S, Lin W X. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes. Agric Ecosyst Environ, 2019, 270: 19-31.
[14] Chen T, Lin S, Wu L K, Lin W X, Sampietro D. Soil sickness: current status and future perspectives. Allelopathy J, 2015, 36: 167-196.
[15] 吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视. 中国生态农业学报, 2020, 28: 775-793.
Wu H M, Lin W X. A commentary and development perspective on the consecutive monoculture problems of medicinal plants. Chin J Eco-Agric, 2020, 28: 775-793. (in Chinese with English abstract)
[16] Dore T, Makowski D, Malezieux E, Munier N, Tchamitchian M, Tittonell P. Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron, 2011, 34: 197-210.
doi: 10.1016/j.eja.2011.02.006
[17] Kleijn D, Bommarco R, Fijen T P, Garibaldi L A, Potts S G, Putten W H. Ecological intensification: bridging the gap between science and practice. Trends Ecol Evol, 2019, 34: 154-166.
doi: S0169-5347(18)30273-8 pmid: 30509848
[18] Garnett T, Appleby M C, Balmford A, Benton T G, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton P K, Toulmin C, Vermeulen S J, Godfray H. Sustainable intensification in agriculture: premises and policies. Science, 2013, 341: 33-34.
doi: 10.1126/science.1234485 pmid: 23828927
[19] Prasad S, Malav L C, Choudhary J, Kannojiya S, Kundu M, Kumar S, Yadav A N. Soil microbiomes for healthy nutrient recycling. In: Yadav A N, Singh J, Singh C, Yadav N, Current Trends in Microbial Biotechnology for Sustainable Agriculture. Environmental and Microbial Biotechnology. eds. Singapore: Springer, 2021. pp 1-21.
[20] 陈军, 黄珊瑜, 刘冰, 吴林坤, 林文雄. 不同菌肥处理对太子参根际微生物群落的影响. 福建农业学报, 2015, 30: 1171-1177.
Chen J, Huang S Y, Liu B, Wu L K, Lin W X. Effects of microbial fertilizers on microbial community structure in Radix pseudostellariae rhizosphere. Fujian J Agric Sci, 2015, 30: 1171-1177. (in Chinese with English abstract)
[21] Wu H M, Wu H M, Jiao Y Y, Zhang Z Y, Rensing C, Lin W X. The combination of biochar and PGPBs stimulates the differentiation in rhizosphere soil microbiome and metabolites to suppress soil-borne pathogens under consecutive monoculture regimes. GCB Bioenergy, 2022, 14: 84-103.
doi: 10.1111/gcbb.v14.1
[22] Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, Wang Y, Li J P, Li J, Wang Y, Xia H Y, Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X, Gui L G, Callaway R, Tilman D, Li L. Long-term increased grain yield and soil fertility from intercropping. Nat Sustain, 2021, 4: 943-950.
doi: 10.1038/s41893-021-00767-7
[23] Renard D, Tilman D. National food production stabilized by crop diversity. Nature, 2019, 571: 257-260.
doi: 10.1038/s41586-019-1316-y
[24] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415. (in Chinese with English abstract)
[25] Franke A C, Van den Brand G J, Vanlauwe B, Giller K E. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: a review. Agric Ecosyst Environ, 2018, 261: 172-185.
doi: 10.1016/j.agee.2017.09.029
[26] Degani E, Leigh S G, Barber H M, Jones H, Lukac M, Sutton P, Potts S. Crop rotations in a climate change scenario: short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agric Ecosyst Environ, 2019, 285: 106625.
doi: 10.1016/j.agee.2019.106625
[27] 刘帮艳.不同有机质含量的壤土环境对两种太子参生长、产量与品质的影响. 贵州大学硕士学位论文, 贵州贵阳, 2018.
Liu B Y. Effects of Different Organic Matter Content of the Soil Environment on the Growth, Yield and Quality of Two Kinds of Radix pseudostellariae. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2018. (in Chinese with English abstract)
[28] 王晓强, 许跃奇, 何晓冰, 阎海涛, 常栋, 张凯, 毛娟. 不同烤烟品种干物质积累及养分吸收特征. 贵州农业科学, 2022, 50(8): 8-14.
Wang X Q, Xu Y Q, He X B, Yan H T, Chang D, Zhang K, Mao J. Characteristics of dry matte accumulation and nutrient absorption of different flue-cured tobacco varieties. Guizhou Agric Sci, 2022, 50(8): 8-14. (in Chinese with English abstract)
[29] 郭晓蕾, 朱思潮, 翟旭峰, 王怀豫, 宝丽. 硫酸蒽酮法与硫酸苯酚法测定灵芝多糖含量比较. 中华中医药学刊, 2010, 28: 2000-2002.
Guo X L, Zhu S C, Zhai X F, Wang H Y, Bao L. Comparison of methods in determination of polysaccharide in Ganoderma lucidum. Chin Arch Trad Chin Med, 2010, 28: 2000-2002. (in Chinese with English abstract)
[30] 许茜, 王红芳, 周小羽. 太子参皂苷提取工艺优选. 中草药, 2001, 32(9): 34-35.
Xu Q, Wang H F, Zhou X Y. Optimization of extraction technology of Radix pseudostellariae saponins. Chin Trad Herb Drugs, 2001, 32(9): 34-35. (in Chinese with English abstract)
[31] 位小丫, 林煜, 陈婷, 陶子曦, 赵涵予, 林生, 林文雄. 田间条件下植物促生细菌缓解太子参连作障碍的效果评价. 生态学杂志, 2018, 37: 399-408.
Wei X Y, Lin Y, Chen T, Tao Z X, Zhao H Y, Lin S, Lin W X. Effects of plant growth-promoting rhizobacteria on alleviating consecutive monoculture problem of Pseudostellaria heterophylla under field conditions. Chin J Ecol, 2018, 37: 399-408. (in Chinese with English abstract)
[32] Coutinho T, Stephanus-N V. Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol, 2009, 10: 325-335.
doi: 10.1111/j.1364-3703.2009.00542.x pmid: 19400836
[33] Wu H M, Wu L K, Wang J Y, Zhu Q, Lin S, Xu J H, Zheng C L, Chen J, Qin X J, Fang C X, Zhang Z Z, Azeem S, Lin W X. Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil. Front Microbiol, 2016, 7: 335.
[34] 中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1978. pp 62-136.
Institute of Soil Science, Chinese Academy of Sciences. Analysis of Soil Physico-chemical Properties. Shanghai: Shanghai Scientific and Technical Publishers, 1978. pp 62-136. (in Chinese)
[35] 郑世英, 商学芳, 王景平. 可见分光光度法测定盐胁迫下玉米幼苗抗氧化酶活性及丙二醛含量. 生物技术通报, 2010, (7): 106-109.
Zheng S Y, Shang X F, Wang J P. Determination of antioxidant enzyme activity and contents of MDA in maize seedlings under salt stress with visible spectrophotometry. Biotechnol Bull, 2010, (7): 106-109. (in Chinese with English abstract)
[36] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[37] 唐五湘. T型关联度及其计算方法. 数理统计与管理, 1995, 14(1): 34-37.
Tang W X. The concept and the computation method of T’s correlation degree. Appl Statist Manag, 1995, 14(1): 34-37. (in Chinese)
[38] David K. Grey system and grey relational model. ACM SIGICE Bull, 1994, 20: 2-9.
doi: 10.1145/190690.190691
[39] Zhou X G, Wu F. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol Ecol, 2012, 80: 469-478.
doi: 10.1111/j.1574-6941.2012.01312.x pmid: 22273443
[40] 吴林坤, 吴红淼, 朱铨, 陈军, 王娟英, 吴艳红, 林生, 林文雄. 不同改良措施对太子参根际土壤酚酸含量及特异菌群的影响. 应用生态学报, 2016, 27: 3623-3630.
doi: 10.13287/j.1001-9332.201611.004
Wu L K, Wu H M, Zhu Q, Chen J, Wang J Y, Wu Y H, Lin S, Lin W X. Effects of different amendments on contents of phenolic acids and specific microbes in rhizosphere of Pseudostellaria heterophylla. J Appl Ecol, 2016, 27: 3623-3630. (in Chinese with English abstract)
[41] 吴红淼.连作太子参根际环境灾变的机理及其防控策略研究. 福建农林大学博士学位论文, 福建福州, 2018. pp 10-14.
Wu H M.The Ecological Mechanism of Rhizosphere Environment Succession Mediated by the Monoculture of Radix Pseudostellariae and Its Regulation. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, 2018. pp 10-14. (in Chinese with English abstract)
[42] Wu H M, Wu L K, Zhu Q, Wang J Y, Qin X X, Xu J H, Kong L F, Chen J, Lin S, Khan M, Amjad H, Lin W X. The role of organic acids on microbial deterioration in the Radix pseudostellariae rhizosphere under continuous monoculture regimes. Sci Rep, 2017, 7: 3497.
doi: 10.1038/s41598-017-03793-8
[43] Hu J L, Jin V L, Konkel J, Schaeffer S, Schneider L, Debruyn J. Soil health management enhances microbial nitrogen cycling capacity and activity. Msphere, 2021, 6: 1220-1237.
[44] 陆姣云, 张鹤山, 田宏, 熊军波, 刘洋. 氮沉降影响草地生态系统土壤氮循环过程的研究进展. 草业学报, 2022, 31(6): 221-234.
doi: 10.11686/cyxb2021156
Lu J Y, Zhang H S, Tian H, Xiong J B, Liu Y. Research progress on effects of nitrogen deposition on soil nitrogen cycling in grassland ecosystems. Acta Pratac Sin, 2022, 31(6): 221-234. (in Chinese with English abstract)
[45] 郭俊杰, 朱晨, 刘文波, 王建中, 凌宁, 郭世伟. 不同施肥模式对土壤氮循环功能微生物的影响. 植物营养与肥料学报, 2021, 27: 751-759.
Guo J J, Zhu C, Liu W B, Wang J Z, Ling N, Guo S W. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle. J Plant Nutr Fert, 2021, 27: 751-759. (in Chinese with English abstract)
[46] Fang C X, Li Y Z, Li C X, Li B L, Ren Y J, Zheng H P, Zeng X M, Shen L H, Lin W X. Identification and comparative analysis of micro RNAs in barnyardgrass (Echinochloa crus-galli) in response to rice allelopathy. Plant Cell Environ, 2015, 38: 1368-1381.
doi: 10.1111/pce.2015.38.issue-7
[47] Henry S, Stephanie T, Hallet S, Bru D, Dambreville D, Chèneby D, Bizouard F, Germon C, Philippot L. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ Microbiol, 2008, 10: 3082-3092.
doi: 10.1111/j.1462-2920.2008.01599.x pmid: 18393993
[48] Coskun D, Britto D, Shi W M, Kronzucker H. How plant root exudates shape the nitrogen cycle. Trends Plant Sci, 2017, 22: 661-673.
doi: S1360-1385(17)30093-6 pmid: 28601419
[49] Lin S, Huangpu J J, Chen T, Wu L K, Zhang Z Y, Lin W X. Effects of different cropping patterns on the physiology and quality of Pseudostellariae heterophylla. Int J Agric Biol, 2014, 16: 981.
[50] Deng J L. Introduction to grey system theory. J Grey Syst, 1989, 1: 1-24.
[1] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
[2] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[3] 林志敏, 秦贤金, 吴红淼, 庞孜钦, 林文雄. 不同太子参品种对连作胁迫差异响应及种内间作效应分析[J]. 作物学报, 2022, 48(9): 2351-2365.
[4] 赵影星, 王彪, 刘晴, 宋彤, 张学鹏, 陈源泉, 隋鹏. 黑龙港平原基于麦-玉复种的两年轮作模式农田水分消耗特征研究[J]. 作物学报, 2022, 48(7): 1787-1779.
[5] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[6] 王玉珑, 于爱忠, 吕汉强, 王琦明, 苏向向, 柴强. 绿洲灌区小麦秸秆还田与耕作措施对玉米产量的影响[J]. 作物学报, 2022, 48(10): 2671-2679.
[7] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[8] 武超, 刘贤文, 张炜, 王琼, 郭华春. 马铃薯不同品种(系)和稻、薯轮作模式对根结线虫病的防治效果[J]. 作物学报, 2020, 46(9): 1456-1463.
[9] 姚兆磊, 张继宗, 杜玉琼, 刘玉华, 张立峰. 华北寒旱区作物轮作的生产效应[J]. 作物学报, 2020, 46(12): 1923-1932.
[10] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[11] 王芳,陈井生,刘大伟. 不同种植方式大豆根际土壤细菌多样性分析[J]. 作物学报, 2018, 44(10): 1539-1547.
[12] 肖克,唐静,李继福,邹家龙,朱建强. 长期水稻-冬油菜轮作模式下钾肥的适宜用量[J]. 作物学报, 2017, 43(08): 1226-1233.
[13] 殷文**,冯福学**,赵财,于爱忠,柴强*,胡发龙,郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响[J]. 作物学报, 2016, 42(05): 751-757.
[14] 吴林坤,陈军,吴红淼,王娟英,秦贤金,张重义,林文雄. 地黄连作胁迫响应机制的块根蛋白质组学分析[J]. 作物学报, 2016, 42(02): 243-254.
[15] 徐晖,崔怀洋,张伟,丁锦峰,李春燕,郭文善,朱新开. 播期、密度和施氮量对稻茬小麦光明麦1号氮肥表观利用率的调控[J]. 作物学报, 2016, 42(01): 123-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .