欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2572-2581.doi: 10.3724/SP.J.1006.2023.21067

• 研究简报 • 上一篇    下一篇

复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响

张刁亮(), 杨昭, 胡发龙, 殷文, 柴强, 樊志龙()   

  1. 省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2022-10-13 接受日期:2023-02-21 出版日期:2023-09-12 网络出版日期:2023-03-06
  • 通讯作者: *樊志龙, E-mail: fanzl@gsau.edu.cn
  • 作者简介:张刁亮, E-mail: zhangdl0320@163.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1700204-04);甘肃省科技计划项目(22JR5RA860)

Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels

ZHANG Diao-Liang(), YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long()   

  1. State Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-10-13 Accepted:2023-02-21 Published:2023-09-12 Published online:2023-03-06
  • Supported by:
    National Key Research and Development Program of China(2021YFD1700204-04);Gansu Provincial Science and Technology Program(22JR5RA860)

摘要:

探明麦后复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响, 对构建干旱灌区基于绿肥的小麦稳产丰产与优质生产模式具有重要的理论和实践支撑作用。本研究采用裂区试验设计, 主区设2种种植模式: 麦后复种绿肥(W-G)和麦后休闲(W); 副区设小麦生育期3个灌水水平: 低灌水(I1: 190 mm)、中灌水(I2: 240 mm)、高灌水(I3: 290 mm), 于2020年和2021年测定分析了小麦籽粒蛋白质含量、淀粉含量、容重等品质指标, 产量表现及土壤有机质含量变化。结果表明: 在同一灌水水平下, W-G较W小麦籽粒蛋白质含量增加了5.8%~26.5%、湿面筋含量增加了9.3%~26.4%、容重增加了0.4%~2.1%; 同一种植模式不同灌水水平之间, 小麦籽粒蛋白质含量随灌水水平的降低呈增加趋势, 而籽粒淀粉含量和湿面筋含量随灌水水平的降低呈减少趋势, I2小麦籽粒容重显著大于I1和I3; 各组合处理之间, 麦后复种绿肥中灌水水平(W-GI2)的小麦籽粒蛋白质含量与麦后复种绿肥低灌水水平(W-GI1)之间差异不显著, 均高于其他处理, 较麦后休闲高灌水水平(WI3)增加了15.1%~35.0%, W-GI2的小麦籽粒淀粉含量、湿面筋含量均与麦后复种绿肥高灌水水平(W-GI3)差异不显著。W-G较W籽粒产量增加了7.0%~13.2%; 小麦籽粒产量随灌水水平的降低呈减少趋势, 但W-GI2小麦籽粒产量与W-GI3差异不显著, 较WI3平均增加了6.0%。W-G较W使小麦播前土壤有机质含量增加了5.6%~31.5%, 但W-GI2土壤有机质含量在20~40 cm土层与W-GI3差异不显著, 较WI3平均增加了7.8%。总之, 麦后复种绿肥较麦后休闲处理能够显著增加麦田土壤有机质含量, 使小麦在中灌水条件下获得较高籽粒产量的同时, 改善籽粒蛋白质、淀粉、湿面筋含量等品质, 可作为干旱灌区限量灌溉条件下小麦持续稳产丰产与品质优化的推荐农艺措施。

关键词: 绿肥, 灌水水平, 籽粒品质, 产量, 小麦

Abstract:

It is proved that the effect of multiple cropping green manure after wheat harvest on wheat grain quality and yield with different irrigation levels has an important theoretical and practical supporting role in building a stable and high-yield and high-quality production mode of wheat based on green manure in arid irrigation areas. In this study, a split plot design was adopted. Two cropping patterns were set up in the main area: wheat with multiple cropping green manure (W-G) and wheat with autumn fallow (W). Three irrigation levels were set in the sub district during wheat growth period: low irrigation quota (I1: 190 mm), medium irrigation quota (I2: 240 mm), and high irrigation quota (I3: 290 mm). The quality indexes, such as protein content, starch content, unit weight, and other quality, and yield performance of wheat were measured and analyzed in 2020 and 2021. The results showed that with the same irrigation level, compared with W, the grain protein content of W-G wheat increased by 5.8%-26.5%, the wet gluten content increased by 9.3%-26.4%, and the unit weight increased by 0.4%-2.1%. Between different irrigation levels in the same cropping pattern, the protein content of wheat grains increased with the decrease of irrigation level, while the starch content and wet gluten content of wheat grains decreased with the decrease of irrigation level. The grain unit weight of I2 wheat was significantly greater than I1 and I3. Among the treatments of each combination, the protein content of wheat grain at the medium irrigation level of multiple cropping green manure (W-GI2) and the low irrigation level of multiple green manure (W-GI1) had no significant difference, which were higher than other treatments, increased by 15.1%-35.0% compared with the high irrigation level of wheat with autumn fallow (WI3), and the starch content and wet gluten content of wheat grain at W-GI2 had no significant difference compared with the high irrigation level of wheat with multiple cropping green manure (W-GI3), which were 3.2%-3.4% and 7.5%-12.9% higher than WI3, respectively. The unit weight of wheat grains was maximized. Compared with leisure after wheat harvest treatment, wheat grain yield of W-G increased by 7.0%-13.2%. The grain yield of wheat decreased with the decrease of irrigation level, but the grain yield of W-GI2 wheat was not significantly different from that of W-GI3, and increased by 6.0% on average compared with that of WI3. Compared with W, W-G increased the content of soil organic matter before wheat sowing by 5.6%-31.5%, but the content of soil organic matter of W-GI2 was not significantly different from that of W-GI3 in 20-40 cm soil layer, and increased by 7.8% on average compared with that of WI3. In conclusion, multiple cropping green manure after wheat harvest can significantly increase the content of soil organic matter in wheat field compared with leisure after wheat harvest treatment, enable wheat to obtain higher grain yield with medium irrigation conditions, and improve grain protein, starch, wet gluten content, and other qualities, which can be used as a recommended agronomic measure for sustainable and stable yield and high yield and quality optimization of wheat under limited irrigation in arid irrigation areas.

Key words: green manure, irrigation level, grain quality, yield, wheat

图1

2020年和2021年试区小麦季月平均降雨量和月平均气温"

表1

不同处理代码及具体措施"

种植模式
Cropping pattern
灌水水平
Irrigation level
处理组合代码 Treatment
combined code
具体措施
Concrete measure
麦后复种绿肥 Wheat multiple cropping with green manure (W-G) 低灌水
Low irrigation quota (I1)
W-GI1 小麦收获后浅旋灭茬复种绿肥, 在10月中旬落霜后(绿肥开花期), 将绿肥全量翻压还田, 翻压深度25 cm。
After wheat harvest, shallow rotation stubble killing and replanting of green manure were carried out. After frost fell in mid-October (the green manure flowering period), the full amount of green manure was turned over and returned to the field, with a turning depth of 25 cm.
中灌水
Medium irrigation quota (I2)
W-GI2
高灌水
High irrigation quota (I3)
W-GI3
麦后休闲
Wheat with autumn fallow (W)
低灌水
Low irrigation quota (I1)
WI1 小麦收获后夏休闲, 在10月中旬落霜后, 与复种绿肥处理同时进行耕翻, 耕翻深度25 cm。
Summer leisure after wheat harvest, after frost fell in mid-October, ploughing was carried out at the same time as green manure treatment, and the ploughing depth was 25 cm.
中灌水
Medium irrigation quota (I2)
WI2
高灌水
High irrigation quota (I3)
WI3

表2

小麦复种绿肥的灌水定额及灌溉定额"

灌水水平Watering standard 小麦 Wheat 箭筈豌豆 Common vetch 灌溉定额Irrigation quota
苗期
Seedling stage
孕穗期
Booting stage
灌浆期
Filling stage
苗期
Seedling stage
现蕾期
Squaring stage
I1 60 70 60 60 70 320
I2 75 90 75 60 70 370
I3 90 110 90 60 70 420

表3

不同种植模式及灌水水平对小麦籽粒品质的影响"

种植模式
Cropping pattern
灌水水平
Irrigation level
蛋白
Protein (%)
淀粉
Starch (%)
湿面筋
Wet gluten (%)
灰分
Ash content (%)
容重
Unit weight (g L-1)
2020
W-G I1 13.71 a 59.93 b 29.12 a 0.49 a 786.33 b
I2 13.17 ab 61.92 a 29.55 a 0.48 ab 796.71 a
I3 12.85 b 61.91 a 29.73 a 0.49 a 796.64 a
W I1 11.95 c 59.89 b 23.03 c 0.48 ab 783.43 c
I2 11.73 c 61.81 a 25.87 b 0.48 ab 785.84 b
I3 10.16 d 59.87 b 26.17 b 0.45 c 785.83 b
2021
W-G I1 14.52 a 60.55 b 28.49 b 0.52 b 781.02 d
I2 13.98 a 61.22 a 30.25 a 0.51 b 807.33 a
I3 12.85 b 61.12 a 30.95 a 0.53 a 790.85 b
W I1 13.14 b 59.58 c 26.06 c 0.51 b 775.71 e
I2 12.63 bc 61.01 ab 26.93 c 0.51 b 791.11 b
I3 12.15 c 59.28 c 28.14 b 0.50 c 785.87 c
种植模式 (C) ** ** ** ** **
灌水水平 (I) ** ** ** NS **
C×I NS ** * ** **

图2

不同种植模式及灌水水平下小麦籽粒产量表现 W-G: 麦后复种绿肥; W: 麦后休闲; I1、I2、I3分别表示低、中、高灌水水平。图柱上不同小写字母表示同一年不同处理间差异在0.05概率水平差异显著。"

图3

不同种植模式及灌水水平下小麦产量构成 图上处理字母含义同图2。图柱上不同小写字母表示同一年不同处理间差异在0.05概率水平差异显著。"

图4

不同种植模式及灌水水平下土壤有机质含量 图上处理字母含义同图2。图柱上不同小写字母表示同一年不同处理间差异在0.05概率水平差异显著。"

表4

不同种植模式及灌水水平下小麦籽粒品质、产量及其构成和土壤有机质的相关性"

性状
Trait
穗数 Panicle number 穗粒数 Kernel number
per ear
千粒重1000-kernel weight 蛋白 Protein 淀粉 Starch 湿面筋
Wet gluten
灰分
Ash content
容重
Unit weight
土壤有机质Soil organic matter
产量Grain yield 0.957** -0.081 0.499* 0.158 0.677** 0.909** 0.220 0.845** 0.774**
穗数Panicle number -0.090 0.442 0.147 0.622** 0.866** 0.286 0.812** 0.784**
穗粒数Kernel number per ear 0.777** 0.914** 0.323 0.222 0.606** 0.130 0.319
千粒重1000-kernel weight 0.839** 0.626** 0.705** 0.462 0.643** 0.372
蛋白Protein 0.350 0.497* 0.626** 0.258 0.554*
淀粉Starch 0.603** 0.492* 0.789** 0.565*
湿面筋Wet gluten 0.397 0.750** 0.908**
灰分Ash content 0.140 0.600**
容重Unit weight 0.628**
[1] 李浩然, 穆月英. 中国小麦进口贸易格局及其影响因素研究: 基于贸易引力模型. 中国农学通报, 2020, 36(6): 132-139.
doi: 10.11924/j.issn.1000-6850.casb20190900624
Li H R, Mu Y Y. Wheat import trade pattern and its influencing factors in china: based on the trade gravity model. Chin Agric Sci Bull, 2020, 36(6): 132-139. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb20190900624
[2] Liu Y Q, Wang H R, Jiang Z M, Wang W, Xu R N, Wang Q H, Zhang Z H, Li A F, Liang Y, Ou X J, Cao S Y, Tong H N, Wang Y H, Zhou F, Liao H, Hu B, Chu C C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590: 600-605.
doi: 10.1038/s41586-020-03091-w
[3] Langholtz M, Davison B H, Jager H I, Eaton L, Baskaran L, Davis M, Brandt C C. Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Sci Total Environ, 2020, 758: 143602.
doi: 10.1016/j.scitotenv.2020.143602
[4] 苟志文, 殷文, 徐龙龙, 何小七, 王琦明, 柴强. 绿洲灌区复种豆科绿肥条件下小麦稳产的减氮潜力. 植物营养与肥料学报, 2020, 26: 2195-2203.
Gou Z W, Yin W, Xu L L, He X Q, Wang Q M, Chai Q. Potential of nitrogen reduction for maintaining wheat grain yield under multiple cropping with leguminous green manure in irrigated oasis. J Plant Nutr Fert, 2020, 26: 2195-2203. (in Chinese with English abstract)
[5] Yao Z Y, Zhang D B, Yao P W, Zhao N, Li Y Y, Zhang S Q, Zhai B N, Huang D L, Ma A S, Zuo Y J, Cao W D, Gao Y J. Optimizing the synthetic nitrogen rate to balance residual nitrate and crop yield in a leguminous green-manured wheat cropping system. Sci Total Environ, 2018, 631/632: 1234-1242.
doi: 10.1016/j.scitotenv.2018.03.115
[6] Simon L M, Obour A K, Holman J D, Roozeboom K L. Long-term cover crop management effects on soil properties in dryland cropping systems. Agric Ecosyst Environ, 2022, 328: 107852.
doi: 10.1016/j.agee.2022.107852
[7] 常磊, 韩凡香, 柴雨葳, 包正育, 程宏波, 黄彩霞, 杨德龙, 柴守玺. 秸秆带状覆盖对半干旱雨养区冬小麦耗水特征和产量的影响. 应用生态学报, 2019, 30: 4150-4158.
doi: 10.13287/j.1001-9332.201912.026
Chang L, Han F X, Chai Y W, Bao Z Y, Cheng H B, Huang C X, Yang D L, Chai S X. Effects of bundled straw mulching on water consumption characteristics and grain yield of winter wheat in rain-fed semiarid region. Chin J Appl Ecol, 2019, 30: 4150-4158. (in Chinese with English abstract)
[8] 杨宁, 赵护兵, 王朝辉, 张达斌, 高亚军. 豆科作物-小麦轮作方式下旱地小麦花后干物质及养分累积、转移与产量的关系. 生态学报, 2012, 32: 4827-4835.
Yang N, Zhao H B, Wang Z H, Zhang D B, Gao Y J. Accumulation and translocation of dry matter and nutrients of wheat rotated with legumes and its relation to grain yield in a dryland area. Acta Ecol Sin, 2012, 32: 4827-4835 (in Chinese with English abstract).
[9] Zhang C Z, Xue W F, Xue J R, Zhang J, Qiu L J, Chen X J, Hu F, Kardol P, Liu M Q. Leveraging functional traits of cover crops to coordinate crop productivity and soil health. J Appl Ecol, 2022, 59: 2627-2641.
doi: 10.1111/jpe.v59.10
[10] Ma D K, Yin L N, Ju W L, Li X K, Liu X X, Deng X P, Wang S W. Meta-analysis of green manure effects on soil properties and crop yield in northern China. Field Crops Res, 2021, 266: 108146.
doi: 10.1016/j.fcr.2021.108146
[11] Zhang D B, Zhang C, Ren H L, Xu Q, Yao Z Y, Yuan Y Q, Yao P W, Zhao N, Li Y Y, Zhang S Q, Zhai B N, Wang Z H, Huang D L, Cao W D, Gao Y J. Trade-offs between winter wheat production and soil water consumption via leguminous green manures in the Loess Plateau of China. Field Crops Res, 2021, 272: 108278.
doi: 10.1016/j.fcr.2021.108278
[12] 袁金华, 俄胜哲, 车宗贤. 灌溉定额和绿肥交互作用对小麦/玉米带田产量和养分利用的影响. 植物营养与肥料学报, 2019, 25: 223-234.
Yuan J H, E S Z, Che Z X. Effects of irrigation quota and green manure interaction on crop yield and nutrition utilization in the wheat/corn intercropping system. J Plant Nutr Fert, 2019, 25: 223-234. (in Chinese with English abstract)
[13] 杨昭, 柴强, 王玉, 苟志文, 樊志龙, 胡发龙, 殷文. 河西绿洲灌区减量灌溉下绿肥对小麦光合源及产量的补偿效应. 植物营养与肥料学报, 2022, 28: 1003-1014.
Yang Z, Chai Q, Wang Y, Gou Z W, Fan Z L, Hu F L, Yin W. Compensation of green manure on photosynthetic source and yield loss of wheat caused by reduced irrigation in Hexi oasis irrigation area. J Plant Nutr Fert, 2022, 28: 1003-1014. (in Chinese with English abstract)
[14] 姬景红, 张玉龙. 长期不同灌溉对保护地土壤供氮能力的影响. 土壤通报, 2010, 41: 867-871.
Ji J H, Zhang Y L. Effect of different irrigation methods on nitrogen supplying capacity in protected field. Chin J Soil Sci, 2010, 41: 867-871. (in Chinese with English abstract)
[15] Kurt M, Walter S. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron, 2008, 30: 1-16.
doi: 10.1016/j.eja.2008.06.003
[16] 王国璀, 张松茂, 胡发龙, 殷文, 樊志龙, 范虹, 于爱忠, 赵财, 柴强. 绿洲灌区春小麦产量和氮素利用率对绿肥还田量的响应. 植物营养与肥料学报, 2021, 27: 1164-1172.
Wang G C, Zhang S M, Hu F L, Yin W, Fan Z L, Fan H, Yu A Z, Zhao C, Chai Q. Response of grain yield and nitrogen utilization efficiency of spring wheat to green manure incorporation amount in oasis irrigation district. J Plant Nutr Fert, 2021, 27: 1164-1172. (in Chinese with English abstract)
[17] Aguilera J, Motavalli P P, Gonzales M A, Valdivia C. Initial and residual effects of organic and inorganic amendments on soil properties in a potato-based cropping system in the Bolivian Andean Highlands. Am J Exp Agric, 2012, 2: 641-666.
[18] 刘效东, 乔玉娜, 周国逸. 土壤有机质对土壤水分保持及其有效性的控制作用. 植物生态学报, 2011, 35: 1209-1218.
doi: 10.3724/SP.J.1258.2011.01209
Liu X D, Qiao Y N, Zhou G Y. Controlling action of soil organic matter on soil moisture retention and its availability. Chin J Plant Ecol, 2011, 35: 1209-1218. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2011.01209
[19] Talgre L, Lauringson E, Roostalu H, Asvoter A. The effects of green manures on yields and yield quality of spring wheat. Agron Res, 2009, 7: 125-132.
[20] 白金顺, 曹卫东, 包兴国, 芮玉奎, 曾闹华, 高嵩涓, 志水胜好. 长期绿肥翻压对西北旱地小麦籽粒矿质元素含量的影响. 光谱学与光谱分析, 2017, 37: 1847-1851.
Bai J S, Cao W D, Bao X G, Rui Y K, Zeng N H, Gao S J, Katsuyoshi S. Effects of long-time green manure application on the concentrations of mineral elements in grain of dryland wheat in northwest of china. Spectr Spectr Anal, 2017, 37: 1847-1851. (in Chinese with English abstract)
[21] Aghili F, Gamper H A, Eikenberg J, Khoshgoftarmanesh A H, Afyuni M, Schulin R, Jansa J, Frossard E. Green manure addition to soil increases grain zinc concentration in bread wheat. PLoS One, 2014, 9: 101487.
[22] 付国占, 严美玲, 蔡瑞国, 贾秀领, 田雷, 曹鸿鸣, 王振林. 磷氮配施对小麦籽粒蛋白质组分含量和面团特性的影响. 中国农业科学, 2008, 41: 1640-1648.
Fu G Z, Yan M L, Cai R G, Jia X L, Tian L, Cao H M, Wang Z L. Effects of application of phosphorus combined with nitrogen fertilizer on contents of grain protein components and dough rheological characteristics in wheat. Sci Agric Sin, 2008, 41: 1640-1648. (in Chinese with English abstract)
[23] Foulkes M J, Scott R K, Sylvester-Bradley R. The ability of wheat cultivars to withstand drought in UK conditions: formation of grain yield. J Agric Sci Cambridge, 2002, 138: 153-169.
doi: 10.1017/S0021859601001836
[24] 姜东燕, 于振文. 土壤水分对小麦产量和品质的影响. 核农学报, 2007, 21: 641-645.
Jiang D Y, Yu Z W. Effects of soil water on yield and grain quality of wheat. J Nucl Agric Sci, 2007, 21: 641-645. (in Chinese with English abstract)
doi: 10.11869/hnxb.2007.06.0641
[25] 裴雪霞, 党建友, 张定一, 张晶, 高璐, 程麦凤, 王娇爱. 化肥减量配施有机肥对旱地小麦产量、品质和水分利用率的影响. 水土保持学报, 2021, 35(4): 250-258.
Pei X X, Dang J Y, Zhang D Y, Zhang J, Gao L, Cheng M F, Wang J A. Effects of chemical fertilizer reduction combined with organic fertilizer on the yield, quality, and water use efficiency of dryland wheat. J Soil Water Conserv, 2021, 35(4): 250-258. (in Chinese with English abstract)
[26] 薛乃雯, 高志强, 杨珍平. 旱地麦田夏闲期复种绿肥对后茬冬小麦产量、植株养分和土壤养分的影响. 山西农业科学, 2022, 50: 630-637.
Xue N W, Gao Z Q, Yang Z P. Effects of planting green manure in summer fallow period on yield, plant nutrients and soil nutrients of subsequent winter wheat in dryland wheat field. J Shanxi Agric Sci, 2022, 50: 630-637. (in Chinese with English abstract)
[27] Zhou Q, Jiang D, Dai W B, Cao W D, Jing Q. Effects of varied carbon and nitrogen supply on starch and protein accumulation in grain during early filling of wheat. Acta Agron Sin, 2004, 30: 975-979.
[28] Fontana M B, Novelli L E, Sterren M A, Uhrich W G, Benintende S M, Barbagelata P A. Long-term fertilizer application and cover crops improve soil quality and soybean yield in the northeastern pampas region of Argentina. Geoderma, 2021, 385: 114902.
doi: 10.1016/j.geoderma.2020.114902
[29] Badaruddin M, Meyer D W. Green-manure legume effects on soil nitrogen, grain yield, and nitrogen nutrition of wheat. Crop Sci, 1990, 30: 819-825.
doi: 10.2135/cropsci1990.0011183X003000040011x
[30] 麻碧娇, 苟志文, 殷文, 于爱忠, 樊志龙, 胡发龙, 赵财, 柴强. 干旱灌区麦后复种绿肥与施氮水平对小麦光合性能与产量的影响. 中国农业科学, 2022, 55: 3501-3515.
doi: 10.3864/j.issn.0578-1752.2022.18.003
Ma B J, Gou Z W, Yin W, Yu A Z, Fan Z L, Hu F L, Zhao C, Chai Q. Effects of multiple cropping green manure after wheat harvest and nitrogen application levels on wheat photosynthetic performance and yield in arid irrigated areas. Sci Agric Sin, 2022, 55: 3501-3515. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.18.003
[31] 刘佳, 曹卫东, 荣向农, 金强, 梁金凤. 华北冬绿肥作物二月兰的营养特征研究. 中国土壤与肥料, 2012, (1): 78-82.
Liu J, Cao W D, Rong X N, Jin Q, Liang J F. Nutritional characteristics of orychophragmus violaceus in north china. Soils Fert Sci China, 2012, (1): 78-82. (in Chinese with English abstract)
[32] 翟羽雪, 刘宇娟, 张伟纳, 谢旭东, 周国勒, 谢迎新, 冯伟, 王晨阳, 郭天财. 水氮处理对稻茬小麦籽粒产量及品质的影响. 麦类作物学报, 2018, 38: 578-583.
Zhai Y X, Liu Y J, Zhang W N, Xie X D, Zhou G Q, Xie Y X, Feng W, Wang C Y, Guo T C. Effect of nitrogen and water on grain yield and quality of paddy wheat. J Triticeae Crops, 2018, 38: 578-583. (in Chinese with English abstract)
[33] Cooper M, Woodruff D R, Phillips I G, Basford K E, Gilmour A R. Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Res, 2001, 69: 47-67.
doi: 10.1016/S0378-4290(00)00131-3
[34] 何刚, 王朝辉, 李富翠, 戴健, 李强, 薛澄, 曹寒冰, 王森, 刘慧, 罗来超, 黄明. 地表覆盖对旱地小麦氮磷钾需求及生理效率的影响. 中国农业科学, 2016, 49: 1657-1671.
doi: 10.3864/j.issn.0578-1752.2016.09.003
He G, Wang Z H, Li F C, Dai J, Li Q, Xue C, Cao H B, Wang S, Liu H, Luo L C, Huang M. Nitrogen, phosphorus and potassium requirement and their physiological efficiency for winter wheat affected by soil surface managements in dryland. Sci Agric Sin, 2016, 49: 1657-1671. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.09.003
[35] 武天云, Schoenau J J, 李凤民, 钱佩源, 张树清, Malhi S S, 王方. 土壤有机质概念和分组技术研究进展. 应用生态学报, 2004, 15: 717-722.
Wu T Y, Schoenau J J, Li F M, Qian P Y, Zhang S Y, Malhi S S, Wang F. Concepts and relative analytical techniques of soil organic matter. Chin J Appl Ecol, 2004, 15: 717-722. (in Chinese with English abstract)
[36] Han X, Xu C, Dungait J, Bol R, Wang X J, Wu W L, Meng F Q. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis. Biogeoenc Discuss, 2018, 15: 1933-1946.
[37] 孙洪仁, 刘国荣, 张英俊, 高飞, 逯涛林, 韩建国. 紫花苜蓿的需水量、耗水量、需水强度、耗水强度和水分利用效率研究. 草业科学, 2005, 22: 24-30.
Sun H R, Liu G R, Zhang J Y, Gao F, Lu T L, Han J G. Water requirement water consumption water requirement rate water consumption rate and water use efficiency of alfalfa. Pratac Sci, 2005, 22: 24-30. (in Chinese with English abstract)
[38] 赵智勇, 李秀绒, 柴永峰, 毕红园, 孙来虎, 姚景珍, 席吉龙, 扬帆. 播期、播量和氮肥对强筋小麦‘运旱618’产量和品质的影响. 中国农学通报, 2016, 32(21): 28-31.
doi: 10.11924/j.issn.1000-6850.casb16040017
Zhao Z Y, Li X R, Chai Y F, Bi H Y, Sun L H, Yao J Z, Xi J L, Yang F. Effects of sowing time, seeding rate and nitrogen fertilizer on strong gluten wheat ‘Yunhan 618’ grain yield and quality. Chin Agric Sci Bull, 2016, 32(21): 28-31. (in Chinese with English abstract)
[1] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[2] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[3] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[4] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[5] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[6] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[7] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[8] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[9] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[10] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[11] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[12] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[13] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[14] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[15] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[9] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .
[10] 王嘉宇;范淑秀;徐正进;陈温福. 几个不同穗型水稻品种籽粒灌浆特性的研究[J]. 作物学报, 2007, 33(08): 1366 -1371 .