欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2599-2613.doi: 10.3724/SP.J.1006.2024.31082

• 耕作栽培·生理生化 • 上一篇    下一篇

气候变化与轮作制度对晋北饲用燕麦产草量的影响

成华强1,2,3(), 侯青青1,2,3, 朱敏1,2,3, 杨轩1,2,3,*()   

  1. 1山西农业大学草业学院, 山西太谷 030801
    2草地生态保护与乡土草种质创新山西省重点实验室, 山西右玉 037200
    3山西右玉黄土高原草地生态系统定位观测研究站, 山西右玉 037200
  • 收稿日期:2023-12-22 接受日期:2024-06-20 出版日期:2024-10-12 网络出版日期:2024-07-09
  • 通讯作者: *杨轩, E-mail: yangxuan2019@sxau.edu.cn
  • 作者简介:E-mail: 13033466023@163.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(32001404);山西农业大学科技创新基金项目(2020BQ26)

Effects of climate change and crop rotation system on forage oats yield in northern Shanxi province

CHENG Hua-Qiang1,2,3(), HOU Qing-Qing1,2,3, ZHU Min1,2,3, YANG Xuan1,2,3,*()   

  1. 1College of Grassland Science, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, Youyu 037200, Shanxi, China
    3Shanxi Youyu Loess Plateau Grassland Ecosystem National Observation and Research Station, Youyu 037200, Shanxi, China
  • Received:2023-12-22 Accepted:2024-06-20 Published:2024-10-12 Published online:2024-07-09
  • Contact: *E-mail: yangxuan2019@sxau.edu.cn
  • Supported by:
    Youth Science Foundation of National Natural Science Foundation of China(32001404);Science and Technology Innovation Fund of Shanxi Agricultural University(2020BQ26)

摘要:

本研究旨在探究适合晋北地区饲用燕麦(Avena sativa L.)轮作制度及各区域饲用燕麦产量对气候变化和轮作制度的响应。为此, 基于已验证的APSIM (Agricultural Production System sIMulator)设定3种轮作制度, 即O-O (饲用燕麦连作)、P-O (马铃薯-饲用燕麦轮作)、M-O (玉米-饲用燕麦轮作), 结合气候模型对晋北18个站点进行模拟研究。 结果表明: APSIM可有效模拟晋北地区玉米, 马铃薯和饲用燕麦的生产, 归一化均方根误差NRMSE小于21%, 一致性系数d大于0.90; 平鲁、神池、左云饲用燕麦产草量高(16,020~20,817 kg hm-2); 对比MID与BAS时期, 各站点O-O、M-O、P-O饲用燕麦产草量增加5.49%~23.20%; 对比END和MID时期, 代县、大同等10站点O-O、M-O和P-O的饲用燕麦产草量提高0.27%~9.15%, 繁峙仅O-O产草量显著下降22.76%; P-O系统有更多的季后土壤水分留存, 多数情况下实行该系统更利于饲用燕麦高稳产; 土壤储水能力较差但植物可利用水分较高的阳高点, 易因预测情景的降雨量提高弥补燕麦生长旺盛期被利用的水分, 利于耗水较多的O-O。综上, 本研究结果有助于挖掘晋北区域饲用燕麦生产对区域气候变化的响应机制, 并为饲用燕麦高产、稳产的科学管理提供理论基础。

关键词: 饲用燕麦, 轮作, 晋北农牧交错带, 气候变化, APSIM

Abstract:

To investigate the suitability of crop rotation systems involving forage oats (Avena sativa L.) and their response to climate change in northern Shanxi province, this study utilized the validated APSIM (Agricultural Production System sIMulator) climate model. Three planting patterns were employed: O-O (continuous cropping of forage oats), P-O (rotation of potato and forage oats), and M-O (rotation of maize and forage oats). Scenario simulations were conducted at eighteen sites. The results demonstrated the effective simulation of maize, potato, and forage oats production in northern Shanxi Province using APSIM. The normalized root mean square error (NRMSE) values were below 21%, while the Willmott agreement index (d) values exceeded 0.90. The highest forage oats yield was observed in Pinglu, Shenchi, and Zuoyun, ranging from 16,020 to 20,817 kg hm-2. The forage yield of O-O, M-O, and P-O systems in the mid-period (MID) exhibited an increase of 5.49% to 23.20% compared to the base period (BAS). In the end period (END), the forage oats yield in Daixian, Datong, and 10 other locations improved by 0.27% to 9.15% compared to the MID period, while it decreased by 1.84% to 4.10% in Zuoyun, Shuozhou, Youyu, and Shenchi. Notably, the forage yield of O-O in Fanshi was 22.76% lower in the END period compared to the MID period. The P-O system exhibited superior soil water retention compared to other systems after the growing seasons, making it more effective in achieving high and stable forage oats production in most cases. For the Yanggao site, which had poor soil water storage capacity but high plant available water, the projected high precipitation conditions would compensate for the relatively high-water consumption in the O-O system. Overall, the findings of this study contribute to understanding the response mechanism of forage oats production to regional climate change in northern Shanxi Province and provide a theoretical basis for the scientific management of high and stable forage oats production.

Key words: forage oats, crop rotation, Agro-Pastoral Ecotone of northern Shanxi, climate change, APSIM

表1

研究区土壤基本参数[22]"

土壤深度
Soil depth
(cm)
容重
Bulk density
(g cm-3)
萎蔫系数
15 bar lower
(mm mm-1)
田间持水量
Field capacity
(mm mm-1)
饱和含水量
Field saturation
(mm mm-1)
风干系数
Airdry coefficient
(mm mm-1)
0-10 1.256 0.140 0.235 0.483 0.011
10-20 1.324 0.148 0.259 0.477 0.012
20-40 1.313 0.160 0.254 0.457 0.014
40-60 1.327 0.172 0.264 0.436 0.018
60-80 1.354 0.231 0.275 0.428 0.016
80-100 1.368 0.173 0.285 0.447 0.017
100-120 1.418 0.174 0.311 0.334 0.017

表2

饲用燕麦、玉米、马铃薯的基本参数[22]"

作物
Crop
参数
Parameter
描述
Description

Value
饲用燕麦
(黑玫克)
Forage oats
(Haymaker)
tt_end_of_juvenile 生长期结束至初花期积温
Thermal time from end of juvenile to floral initiation (℃ d)
210
tt_floral_initiation 初花期至盛花期积温 Thermal time from floral initiation to flowering (℃ d) 290
tt_flowering 盛花期至灌浆期积温 Thermal time from flowering to grain filling (℃ d) 130
photop_sens 光周期敏感性指数 Photoperiod sensitivity 1.5
y_height 最大株高 Maximal plant heigh (mm) 1500
y_rue 辐射利用效率 Radiation use efficiency (g MJ-1) 1.9
vern_sens 春化敏感性指数 Vernalization sensitivity 3.0
tt_start_grain_fill 灌浆期所需积温 Thermal time for grain filling stage (℃ d) 545
y_sla_max 最大比叶面积 Maximum specific leaf area for delta LAI 2000-2200
sla_min 最小比叶面积 Minimum specific leaf area for delta LAI 1800
玉米
(利合228)
Maize
(Lihe 228)
tt_emerg_to_endjuv 出苗至生长期结束积温 Thermal time from emergency to end of juvenile (℃ d) 200
tt_flower_to_start_grain 盛花期至灌浆期积温Thermal time from flowering to grain filling (℃ d) 170
tt_flower_to_maturity 盛花期至成熟期积温Thermal time from flowering to maturity (℃ d) 570
leaf_init_rate 花期前叶片分化积温
Degree days to initiate each leaf primordium until floral init (deg day) (℃ d)
27
y_height 最大株高Maximal plant heigh (mm) 3000
rue 辐射利用效率Radiation use efficiency (g MJ-1) 1.85
photoperiod_crit1 光周期临界值1 Photoperiod critical value 1 (h) 12.5
photoperiod_crit2 光周期临界值2 Photoperiod critical value 2 (h) 20.0
photoperiod_slope 光周期斜率 Photoperiodslope 0.1
potKernelWt 潜在千粒重Potential thousand seed weight 260
马铃薯
(希森6)
Potato
(Xisen 6)
y_tt_emergence 出苗期至营养生长期积温 Thermal time from end of juvenile to floral initiation (℃ d) 460
tt_earlytuber 块茎形成期至块茎膨大期积温 Thermal time from floral initiation to flowering (℃ d) 510
tt_senescing 块茎膨大期与淀粉积累期积温Thermal time from senescing to maturity (℃ d) 850
x_pp_emergence 苗期光周期 Photoperiod of seedling stage (h) 12
y_height 最大株高Photoperiod sensitivity (mm) 500
y_rue 辐射利用效率 Radiation use efficiency (g MJ-1) 1.2-2.5
x_stem_wt 茎干重 Stem weight per plant (g plant-1) 6.0
tt_vegetative 营养生长期结束积温 Thermal time for vegetative stage(℃ d) 20
tt_senesced 茎叶完全衰老积温 Thermal time for senesced (℃ d) 5.0
shoot_rate 随胚芽鞘长度增加的积温量 Thermal time increase with depth for coleoptile (℃ d mm-1) 0.75

表3

晋北地区18个站点的基础信息"

站点
Site
所属市
City
经度
Longitude (°)
纬度
Latitude (°)
海拔高度
Altitude (m)
播种日期
Sowing date (month/day)
天镇Tianzhen 大同Datong 114.05 40.43 1014.7 04/28-05/18
广灵Guangling 大同Datong 114.27 39.75 977.8 04/26-05/16
灵丘Lingqiu 大同Datong 114.18 39.45 938.7 04/25-05/15
阳高Yanggao 大同Datong 113.77 40.37 1050.3 04/27-05/17
大同Datong 大同Datong 113.42 40.08 1052.6 04/27-05/17
怀仁Huairen 朔州Shuozhou 113.10 39.82 1044.6 04/22-05/12
浑源Hunyuan 大同Datong 113.67 39.72 1079.2 04/29-05/19
应县Yingxian 朔州Shuozhou 113.17 39.57 1000.7 04/24-05/14
繁峙Fanshi 忻州Xinzhou 113.27 39.17 933.9 04/24-05/14
右玉Youyu 朔州Shuozhou 112.45 40.00 1345.8 05/05-05/25
左云Zuoyun 大同Datong 112.70 40.00 1336.3 05/05-05/25
平鲁Pinglu 朔州Shuozhou 112.27 39.52 1409.4 05/03-05/23
神池Shenchi 忻州Xinzhou 112.20 39.10 1525.4 05/07-05/27
山阴Shanyin 朔州Shuozhou 112.82 39.50 1045.0 04/24-05/14
朔州Shuozhou 朔州Shuozhou 112.43 39.37 1114.8 04/25-05/15
代县Daixian 忻州Xinzhou 112.90 39.02 859.7 04/19-05/09
河曲Hequ 忻州Xinzhou 111.22 39.37 1036.0 04/18-05/08
偏关Pianguan 忻州Xinzhou 111.50 39.43 1051.7 04/24-05/14

表4

土壤类型及参数"

土壤类型及序号
Type order and subtype of Chinese
soil classification
土壤深度
Soil depth
(cm)
容重
Bulk density
(g mm-3)
萎蔫系数
15 bar lower
(mm mm-1)
田间持水量
Field capacity
(mm mm-1)
饱和含水量
Field
saturation
(mm mm-1)
1 夹白干栗土(怀仁, 大同, 浑源)
Light castanozems (Huairen, Datong, Hunyuan)
0-20 1.396 0.042 0.184 0.473
20-32 1.398 0.045 0.190 0.472
32-79 1.405 0.065 0.262 0.470
79-150 1.406 0.069 0.248 0.470
2 淡栗黄土(应县, 神池, 代县)
Light castano cinnamon (Yingxian, Shenchi, Daixian)
0-20 1.423 0.041 0.182 0.463
20-65 1.422 0.046 0.179 0.463
65-104 1.433 0.054 0.207 0.459
104-150 1.430 0.045 0.199 0.461
3 浅钙积栗土(左云, 山阴)
Light castanozems (Zuoyun, Shanyin)
0-16 1.405 0.091 0.294 0.470
16-62 1.400 0.099 0.293 0.472
62-104 1.406 0.104 0.275 0.469
104-150 1.440 0.054 0.180 0.456
4 少姜红栗黄土(平鲁, 繁峙, 河曲)
Castano cinnamon (Pinglu, Fanshi, Hequ)
0-5 1.419 0.090 0.170 0.465
5-15 1.417 0.086 0.172 0.465
15-62 1.416 0.084 0.169 0.466
62-90 1.418 0.122 0.216 0.465
90-128 1.560 0.119 0.236 0.411
128-150 1.560 0.119 0.236 0.411
5 二合栗黄土(朔州, 天镇, 广灵, 灵丘, 偏关)
Castano cinnamon (Shuozhou, Tianzhen, Guangling, Lingqiu, Pianguan)
0-23 1.428 0.104 0.211 0.461
23-50 1.418 0.126 0.240 0.465
50-90 1.410 0.130 0.252 0.468
90-150 1.411 0.128 0.251 0.467
6 浅钙积栗土(阳高)
Light castanozems (Yanggao)
0-20 1.410 0.047 0.173 0.467
20-38 1.420 0.052 0.186 0.466
38-120 1.420 0.067 0.203 0.465
120-150 1.420 0.062 0.217 0.465

表5

各土壤类型的养分含量及pH"

土壤类型序号
Type order and subtype of
Chinese soil classification
土壤有机质
Soil organic matter
(g kg-1)
土壤有机碳
Soil organic carbon
(%)
硝态氮
Nitrate nitrogen
(mg kg-1)
铵态氮
Ammonium nitrogen
(mg kg-1)
pH
1 夹白干栗土 Light castanozems 9.8 0.568 27.5 5.6 8.3
2 淡栗黄土 Light castano 4.5 0.261 13.5 4.7 8.3
3浅钙积栗土 Light castanozems 5.6 0.325 21.5 4.3 8.2
4 少姜红栗黄土 Castano cinnamon 9.4 0.545 30.0 12.0 8.7
5 二合栗黄土 Castano cinnamon 6.6 0.383 21.5 6.3 8.2
6浅钙积栗土 Light castanozems 8.4 0.487 28.5 9.7 8.4

表6

研究选取的20个全球气候模式"

GCM 开发机构
Institute ID
国家
Country
GCM 开发机构
Institute ID
国家
Country
ACCESS1-0 ACCESS 澳大利亚 Australia HadGEM2-ES NIMR/KMA 韩国 R. O. Korea
bcc-csm1-1 BCC 中国 China Inmcm4 INM 俄罗斯 Russia
BNU-ESM GCESS 中国 China IPSL-CM5A-LR IPSL 法国 France
CanESM2 CCCMA 加拿大Canada IPSL-CM5A-MR IPSL 法国 France
CCSM4 NCAR 美国 USA MIROC5 MIROC 日本 Japan
CESM1-BGC NSF-DOENCAR 美国 USA MIROC-ESM MIROC 日本 Japan
CSIRO-Mk3-6-0 CSIRO-QCCCE 澳大利亚Australia MPI-ESM-LR MPI-M 德国 Germany
GFDL-ESM2G NOAA GFDL 美国 USA MPI-ESM-MR MPI-M 德国 Germany
GFDL-ESM2M NOAA GFDL 美国 USA MRI-CGCM3 MRI 日本 Japan
HadGEM2-CC NIMR/KMA 韩国 R. O. Korea NorESM1-M NCC 挪威 Norway

表7

3种作物产量、地上生物量实测值与模拟值之间的验证指标"

作物
Crop
测定项目
Measured item
测试指标Validation index
RMSE (kg hm-2) NRMSE (%) d
玉米Maize 籽粒产量Grain yield 221.52 2.96 0.9976
地上生物量Biomass 986.80 5.58 0.9658
马铃薯Potato 块茎产量Tuber yield 841.49 20.50 0.9517
地上生物量Biomass 259.46 11.49 0.9947
饲用燕麦Oats 地上生物量Biomass 427.64 3.32 0.9854

表8

BAS、MID与END期间生育期平均降水(mm)和平均温度(℃)"

站点
Site
平均降水Mean precipitation (mm) 平均温度Mean temperature (℃)
BAS MID END BAS MID END
代县 Daixian 351.73 383.78 391.31 19.91 22.75 24.85
大同 Datong 305.99 339.87 344.52 19.22 22.09 24.22
繁峙 Fanshi 334.77 367.96 377.17 19.71 22.57 24.69
广灵 Guangling 323.36 357.00 369.67 18.84 21.73 23.83
河曲 Hequ 316.88 348.50 351.75 20.37 23.25 25.40
怀仁 Huairen 298.99 332.14 337.14 19.88 22.75 24.87
浑源 Hunyuan 337.44 372.35 382.15 18.42 21.33 23.46
灵丘 Lingqiu 359.90 397.85 410.97 19.27 22.15 24.26
偏关 Pianguan 335.59 372.37 373.75 20.06 22.95 25.08
平鲁 Pinglu 338.55 375.50 377.67 17.32 20.18 22.32
山阴 Shanyin 297.87 330.64 332.96 19.39 22.25 24.39
神池 Shenchi 378.77 418.52 425.89 16.28 19.15 21.28
朔州 Shuozhou 336.90 371.21 374.61 18.76 21.65 23.80
天镇 Tianzhen 323.85 358.48 371.96 18.69 21.60 23.70
阳高 Yanggao 320.46 355.04 366.23 18.72 21.63 23.74
应县 Yingxian 299.33 333.06 336.48 19.65 22.50 24.63
右玉 Youyu 337.96 375.74 376.99 16.19 19.05 21.21
左云 Zuoyun 336.16 373.83 376.42 17.52 20.40 22.55

表9

晋北地区各点饲用燕麦产量分布图"

站点
site
M-O: 饲用燕麦产量
M-O: Forage oats yield (kg hm-2)
P-O: 饲用燕麦产量
P-O: Forage oats yield (kg hm-2)
O-O: 饲用燕麦产量
O-O: Forage oats yield (kg hm-2)
BAS MID END BAS MID END BAS MID END
代县Daixian 14,107 15,269 15,331 14741 16,229 16,516 15,620 16,582 16,680
大同Datong 12,927 14,249 14,419 13,946 15,633 16,185 15,749 17,003 17,245
繁峙Fanshi 14,303 15,769 12,180 15,798 17,421 17,964 17,005 18,034 18,498
广灵Guangling 13,411 14,837 14,876 14,988 16,997 17,567 16,790 18,117 18,504
河曲Hequ 12,485 13,353 13,486 13,348 14,630 15,124 14,144 14,964 15,545
怀仁Huairen 11,703 13,357 13,573 12,570 14,598 15,520 14,507 16,065 16,762
浑源Hunyuan 14,574 15,986 15,855 15,754 17,720 17,692 17,732 18,774 18,702
灵丘Lingqiou 15,070 16,387 16,551 16,999 18,505 18,770 17,828 19,059 19,254
偏关Pianguan 13,518 15,175 16,563 14,958 16,969 17,048 16,153 17,557 17,649
平鲁Pinglu 16,020 18,128 17,563 17,976 20,401 20,312 18,652 20,817 20,683
山阴Shanyin 14,031 15,458 15,577 15,150 16,925 17,114 16,626 17,538 17,615
神池Shenchi 16,733 19,482 18,842 17,243 20,225 19,632 17,677 20,273 19,728
朔州Shuozhou 14,649 15,709 15,294 15,351 17,435 17,292 16,758 18,169 17,960
天镇Tianzhen 13,689 14,912 15,175 14,587 16,565 17,282 16,143 17,537 17,961
阳高Yanggao 14,851 17,118 18,287 14,975 16,201 16,759 15,840 16,746 17,053
应县Yingxian 12,174 13,490 13,482 12,788 14,586 14,687 14,216 15,304 15,213
右玉Youyu 14,909 18,045 16,935 15,680 19,318 18,691 15,750 18,785 18,060
左云Zuoyun 17,004 18,527 18,166 17,773 19,709 19,326 18,036 19,921 19,456

图1

各站点不同轮作制度下饲用燕麦的产量差 缩写同表9。"

图2

各站点不同气候条件下饲用燕麦的产量差 缩写同表9。"

表10

各站点不同轮作制度和气候变化下饲用燕麦产量的变异系数(CV)和可持续性指数(SYI)"

站点
County
时期
Period
M-O: 饲用燕麦产量
M-O: Forage oats yield
P-O: 饲用燕麦产量
P-O: Forage oats yield
O-O: 饲用燕麦产量
O-O: Forage oats yield
CV SYI CV SYI CV SYI
代县Daixian BAS 0.16 0.62 0.15 0.67 0.19 0.57
MID 0.15 0.68 0.15 0.68 0.17 0.66
END 0.14 0.70 0.14 0.69 0.17 0.61
大同Datong BAS 0.24 0.52 0.18 0.63 0.25 0.48
MID 0.21 0.61 0.17 0.68 0.22 0.59
END 0.19 0.61 0.16 0.64 0.22 0.51
繁峙Fanshi BAS 0.20 0.59 0.17 0.65 0.21 0.60
MID 0.19 0.64 0.17 0.67 0.19 0.59
END 0.17 0.65 0.16 0.68 0.21 0.54
广灵Guangling BAS 0.23 0.55 0.21 0.62 0.23 0.56
MID 0.22 0.59 0.20 0.65 0.24 0.55
END 0.20 0.64 0.18 0.67 0.23 0.56
河曲Hequ BAS 0.23 0.55 0.25 0.55 0.24 0.51
MID 0.21 0.57 0.26 0.50 0.26 0.48
END 0.24 0.53 0.26 0.54 0.28 0.47
怀仁Huairen BAS 0.25 0.46 0.21 0.53 0.26 0.42
MID 0.22 0.50 0.19 0.55 0.23 0.49
END 0.19 0.56 0.18 0.61 0.22 0.48
浑源Hunyuan BAS 0.19 0.60 0.14 0.66 0.20 0.55
MID 0.15 0.68 0.15 0.70 0.17 0.63
END 0.16 0.67 0.14 0.69 0.17 0.63
灵丘Lingqiu BAS 0.19 0.63 0.14 0.67 0.21 0.57
MID 0.17 0.60 0.13 0.65 0.21 0.59
END 0.16 0.65 0.12 0.70 0.25 0.53
偏关Pianguan BAS 0.24 0.51 0.21 0.57 0.24 0.48
MID 0.22 0.53 0.20 0.57 0.24 0.48
END 0.22 0.52 0.20 0.56 0.25 0.53
平鲁Pinglu BAS 0.15 0.68 0.11 0.73 0.19 0.62
MID 0.14 0.71 0.12 0.73 0.20 0.63
END 0.13 0.71 0.12 0.74 0.21 0.55
山阴Shanyin BAS 0.20 0.59 0.14 0.69 0.20 0.55
MID 0.16 0.65 0.13 0.70 0.19 0.59
END 0.14 0.71 0.12 0.69 0.18 0.60
神池Shenchi BAS 0.13 0.72 0.12 0.74 0.16 0.62
MID 0.14 0.68 0.14 0.69 0.14 0.68
END 0.15 0.69 0.15 0.69 0.17 0.63
朔州Shuozhou BAS 0.20 0.61 0.16 0.69 0.22 0.56
MID 0.18 0.62 0.16 0.66 0.21 0.59
END 0.18 0.65 0.14 0.70 0.22 0.55
天镇Tianzhen BAS 0.27 0.48 0.24 0.54 0.28 0.46
MID 0.23 0.58 0.23 0.58 0.26 0.53
END 0.21 0.54 0.21 0.56 0.27 0.49
阳高Yanggao BAS 0.25 0.52 0.22 0.58 0.22 0.54
MID 0.24 0.58 0.20 0.62 0.21 0.55
END 0.20 0.62 0.18 0.65 0.22 0.54
应县Yingxian BAS 0.22 0.54 0.17 0.65 0.23 0.51
MID 0.18 0.64 0.16 0.67 0.21 0.57
END 0.17 0.64 0.15 0.62 0.18 0.58
右玉Youyu BAS 0.23 0.52 0.20 0.59 0.26 0.55
MID 0.18 0.63 0.20 0.61 0.24 0.57
END 0.17 0.63 0.21 0.59 0.24 0.58
左云Zuoyun BAS 0.12 0.74 0.12 0.70 0.19 0.61
MID 0.12 0.73 0.12 0.74 0.19 0.64
END 0.12 0.67 0.12 0.67 0.20 0.61
[1] 石永红, 高鹏, 方志红, 赵祥, 韩伟, 魏江铭, 刘琳, 李锦臻. 15个进口饲用燕麦品种炭疽病的抗病性评价及损失分析. 草业学报, 2023, 32(9): 130-142.
doi: 10.11686/cyxb2022424
Shi Y H, Gao P, Fang Z H, Zhao X, Han W, Wei J M, Liu L, Li J Z. Evaluation of resistance to Colletotrichum cereale and analysis of loss in a field of fifteen imported oat cultivars. Acta Pratac Sin, 2023, 32(9): 130-142 (in Chinese with English abstract).
[2] 闫庆忠. 燕麦草的饲用价值及加工方式. 特种经济动植物, 2022, 25: 138-140.
Yan Q Z. Feeding value and processing mode of oat grass. Special Econ Anim Plant, 2022, 25: 138-140 (in Chinese).
[3] 刘欢欢, 郭雁华, 张巧娥, 梁小军. 燕麦草营养价值评定方法的研究进展. 饲料研究, 2019, 42(7): 110-113.
Liu H H, Guo Y H, Zhang Q E, Liang X J. Research progress of nutritive value assessment method of oat grass. Feed Res, 2019, 42(7): 110-113 (in Chinese with English abstract).
[4] Tang J, Wang J, He D, Huang M X, Pan Z H, Pan X B. Comparison of the impacts of climate change on potential productivity of different staple crops in the agro-pastoral ecotone of North China. J Meteorol Res, 2016, 30: 983-997.
[5] 唐建昭, 肖登攀, 柏会子. 未来气候情景下农牧交错带不同灌溉水平马铃薯产量和水分利用效率. 农业工程学报, 2020, 36(2): 103-112.
Tang J Z, Xiao D P, Bai H Z. Yield and water use efficiency of potato at different irrigation levels in agro-pastoral ecotone under future climate change. Trans CSAE, 2020, 36(2): 103-112 (in Chinese with English abstract).
[6] Myhre G, Alterskjær K, Stjern C W, Hodnebrog Ø, Marelle L, Samset B H, Sillmann J, Schaller N, Fischer E, Schulz M, Stohl A. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep, 2019, 9: 16063.
doi: 10.1038/s41598-019-52277-4 pmid: 31690736
[7] 侯青青, 成华强, 朱敏, 杨轩, 夏方山. 晋北两种饲草作物的APSIM模型参数敏感性分析. 草地学报, 2023, 31: 3114-3122.
doi: 10.11733/j.issn.1007-0435.2023.10.024
Hou Q Q, Cheng H Q, Zhu M, Yang X, Xia F S. Parameter sensitivity analysis on submodules of APSIM to two forages in northern Shanxi province. Acta Agrest Sin, 2023, 31: 3114-3122 (in Chinese with English abstract).
[8] 王莺莺, 张依婧, 李飞, 吕妍. 作物生产潜力变化的区域差异: 以陕西省为例. 干旱区地理, 2019, 42: 615-624.
Wang Y Y, Zhang Y J, Li F, Lyu Y. Regional difference in crop production potential change: a case study of Shaanxi province. Arid Land Geogr, 2019, 42: 615-624 (in Chinese).
[9] 何贤芳, 赵莉, 刘泽, 汪建来. 安徽稻茬小麦产量差异性与生产限制因子构成解析. 北方农业学报, 2020, 48(1): 123-128.
doi: 10.12190/j.issn.2096-1197.2020.01.24
He X F, Zhao L, Liu Z, Wang J L. Analysis of yield difference and production restriction factors of rice stubble wheat in Anhui province. J Northern Agric, 2020, 48(1): 123-128 (in Chinese with English abstract).
[10] 杨绣娟, 孙继颖, 高聚林, 刘剑, 孟繁盛, 张悦忠, 温晓亮, 王志刚, 于晓芳, 刘文翔, 王彦淇. 不同生态条件下氮肥对玉米干物质积累、氮素分配及产量的影响. 华北农学报, 2023, 38(3): 108-120.
doi: 10.7668/hbnxb.20193260
Yang X J, Sun J Y, Gao J L, Liu J, Meng F S, Zhang Y Z, Wen X L, Wang Z G, Yu X F, Liu W X, Wang Y Q. Effects of nitrogen fertilizer on dry matter accumulation, nitrogen distribution and yield of maize under different ecological conditions. Acta Agric Boreali-Sin, 2023, 38(3): 108-120 (in Chinese with English abstract).
[11] 尹国丽, 蔡卓山, 陶茸, 吴芳, 陈建纲, 师尚礼. 不同草田轮作方式对土壤肥力、微生物数量及自毒物质含量的影响. 草业学报, 2019, 28(3): 42-50.
doi: 10.11686/cyxb2018408
Yin G L, Cai Z S, Tao R, Wu F, Chen J G, Shi S L. Effects of different crop rotations on soil nutrient, microorganism abundance and soil allelochemical levels in alfalfa. Acta Pratac Sin, 2019, 28(3): 42-50 (in Chinese with English abstract).
[12] 白春利, 赵和平, 师永明, 丁海君, 刘思博. 荒漠草原区“草田轮作”模式及牧草高效种植技术. 畜牧与饲料科学, 2019, 40(8): 47-49.
Bai C L, Zhao H P, Shi Y M, Ding H J, Liu S B. A rotation mode of crop and grass in desert grassland area and high-efficient cultivation technique of herbage. Anim Husb Feed Sci, 2019, 40(8): 47-49 (in Chinese with English abstract).
[13] 柴继宽. 轮作和连作对燕麦产量、品质、主要病虫害及土壤肥力的影响. 甘肃农业大学博士学位论文, 甘肃兰州, 2012.
Chai J K. Effects of Crop Rotation and Continuing on Productivity, Quality, Pests and Diseases of Oats and Soil Fertility. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2012 (in Chinese with English abstract).
[14] 秦鹏程, 姚凤梅, 曹秀霞, 张佳华, 曹倩. 利用作物模型研究气候变化对农业影响的发展过程. 中国农业气象, 2011, 32: 240-245.
Qin P C, Yao F M, Cao X X, Zhang J H, Cao Q. Development process of modeling impacts of climate change on agricultural productivity based on crop models. Chin J Agrometeorol, 2011, 32: 240-245 (in Chinese with English abstract).
[15] 沈禹颖, 南志标, Bellotti B, Michael R, 陈文, 邵新庆. APSIM模型的发展与应用. 应用生态学报, 2002, 13: 1027-1032.
Shen Y Y, Nan Z B, Bellotti B, Michael R, Chen W, Shao X Q. Development of APSIM (Agricultural Production Systems Simulator) and its application. Chin J Appl Ecol, 2002, 13: 1027-1032 (in Chinese with English abstract).
[16] Ojeda J J, Caviglia O P, Irisarri J G N, Agnusdei M G. Modelling inter-annual variation in dry matter yield and precipitation use efficiency of perennial pastures and annual forage crops sequences. Agric For Meteorol, 2018, 259: 1-10.
[17] Pembleton K G, Cullen B R, Rawnsley R P, Harrison M T, Ramilan T. Modelling the resilience of forage crop production to future climate change in the dairy regions of Southeastern Australia using APSIM. J Agric Sci, 2016, 154: 1131-1152.
[18] Wang E L, Xu J H, Smith C J. Value of historical climate knowledge, SOI-based seasonal climate forecasting and stored soil moisture at sowing in crop nitrogen management in south eastern Australia. Agric For Meteorol, 2008, 148: 1743-1753.
[19] Yang X, Jia P F, Hou Q Q, Zhu M. Quantitative sensitivity of crop productivity and water productivity to precipitation during growth periods in the Agro-Pastoral Ecotone of Shanxi province, China, based on APSIM. Agric Water Manag, 2023, 283: 108309.
[20] Keating B A, Meinke H. Assessing exceptional drought with a cropping systems simulator: a case study for grain production in northeast Australia. Agric Syst, 1998, 57: 315-332.
[21] Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes J P, Silburn M, Wang E, Brown S, Bristow K L, Asseng S, Chapman S, McCown R L, Freebairn D M, Smith C J. An overview of APSIM, a model designed for farming systems simulation. Eur J Agron, 2003, 18: 267-288.
[22] 杨轩, 贾鹏飞, 侯青青, 朱敏. 基于APSIM模型的未来气候中燕麦产量变化及对水分胁迫的敏感性. 中国草地学报, 2022, 44(10): 20-29.
Yang X, Jia P F, Hou Q Q, Zhu M. The evaluation of effects of future climate on forage oats yield and sensitivity to water stress based on Agricultural Production Systems Simulator. Chin J Grassland, 2022, 44(10): 20-29 (in Chinese with English abstract).
[23] 杨轩, 贾鹏飞, 侯青青, 朱敏. 北方农牧交错带气候变化对粮草轮作生产的影响. 山西农业大学学报(自然科学版), 2022, 42(1): 77-89.
Yang X, Jia P F, Hou Q Q, Zhu M. Investigating the impacts of climate change on the production of crop and forage rotational fields in the agro-pastoral interlaced zone in Northern-China. J Shanxi Agric Univ (Nat Sci Edn), 2022, 42(1): 77-89 (in Chinese with English abstract).
[24] 杨轩, 栗国梁, 贾鹏飞, 侯青青, 夏方山. 不同降水年型下饲用燕麦产量对降水变化的响应研究. 畜牧与饲料科学, 2023, 44(1): 80-90.
Yang X, Li G L, Jia P F, Hou Q Q, Xia F S. Responses of forage oat yields to precipitation changes under different precipitation year patterns. Anim Husb Feed Sci, 2023, 44(1): 80-90 (in Chinese with English abstract).
[25] Wang J, Wang E, Yin H, Feng L P, Zhao Y X. Differences between observed and calculated solar radiations and their impact on simulated crop yields. Field Crops Res, 2015, 176: 1-10.
[26] 刘霞霞, 李扬, 王靖, 黄明霞, 白蕤, 宋扬, 胡琦, 张佳莹, 陈仁伟. 基于APSIM模型的内蒙古四大生态区不同降水年型下主要作物适应性评价. 中国农业科学, 2022, 55: 1917-1937.
doi: 10.3864/j.issn.0578-1752.2022.10.004
Liu X X, Li Y, Wang J, Huang M X, Bai R, Song Y, Hu Q, Zhang J Y, Chen R W. Adaptability evaluation of staple crops under different precipitation year types in four ecological regions of Inner Mongolia based on APSIM. Sci Agric Sin, 2022, 55: 1917-1937 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.10.004
[27] Ma Q H, You Y L, Shen Y Y, Wang Z K. Adjusting sowing window to mitigate climate warming effects on forage oats production on the Tibetan Plateau. Agric Water Manag, 2024, 293: 108712.
[28] Pembleton K G, Rawnsley R P, Jacobs J L, Mickan F J, O’Brien G N, Cullen B R, Ramilan T. Evaluating the accuracy of the Agricultural Production Systems Simulator (APSIM) simulating growth, development, and herbage nutritive characteristics of forage crops grown in the south-eastern dairy regions of Australia. Crop Pasture Sci, 2013, 64: 147-164.
[29] Peng Y, Zhang F, Han W, Li Z Z, Zhang S, Cao S M, Weng W H, Chen S. Modeling long-term nitrogen utilization under alfalfa-corn rotation in Northeast China. Field Crops Res, 2024, 309: 109313.
[30] 赵金龙, 汪进欣, 马力文. 基于GIS的宁夏皮燕麦种植气候适宜性分析. 农学学报, 2021, 11(9): 79-84.
doi: 10.11923/j.issn.2095-4050.cjas2020-0010
Zhao J L, Wang J X, Ma L W. Climate suitability analysis of oat planting based on GIS in Ningxia. J Agric, 2021, 11(9): 79-84 (in Chinese with English abstract).
doi: 10.11923/j.issn.2095-4050.cjas2020-0010
[31] 王鹤龄. 增温和降水变化对半干旱区春小麦影响及作物布局对区域气候变化的响应研究. 甘肃农业大学博士学位论文, 甘肃兰州, 2014.
Wang H L. Effects of Warming and Precipitation on Spring Wheat in the Semi-arid Region, and Response of Crop Layout on Regional Climate Change. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2014 (in Chinese with English abstract).
[32] 马雪琴, 赵桂琴, 龚建军. 播期与氮肥对燕麦种子产量构成要素的影响. 草业科学, 2010, 27(8): 88-92.
Ma X Q, Zhao G Q, Gong J J. Effect of sowing date and nitrogen fertilizer on seed yield and its components of oats in alpine area. Pratac Sci, 2010, 27(8): 88-92 (in Chinese with English abstract).
[33] 朱彩芬, 温建雅, 梁艳, 唐丽娜, 朱叶. 朔州市人工燕麦草生育期气候因子适宜度分析. 中南农业科技, 2023, 44(9): 73-76.
Zhu C F, Wen J Y, Liang Y, Tang L N, Zhu Y. Analysis on the suitability of climate factors during the growth period of artificial oat grass in Shuozhou City. South-Central Agric Sci Technol, 2023, 44(9): 73-76 (in Chinese).
[34] Musokwa M, Mafongoya P L, Chirwa P W. Monitoring of soil water content in maize rotated with pigeonpea fallows in South Africa. Water (Basel), 2020, 12: 2761.
[35] 周谷, 李秧秧, 樊军. 利用植物气体交换参数确定萎蔫系数的方法. 土壤学报, 2023, 60: 776-786.
Zhou G, Li Y Y, Fan J. Determination of wilting coefficient by using the plant gas exchange parameters. Acta Pedol Sin, 2023, 60: 776-786 (in Chinese with English abstract).
[36] 李阳阳, 费聪, 崔静, 王开勇, 马富裕, 樊华. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应. 作物学报, 2016, 42: 1727-1732.
doi: 10.3724/SP.J.1006.2016.01727
Li Y Y, Fei C, Cui J, Wang K Y, Ma F Y, Fan H. Compensation response of drip-irrigated sugar beets (Beta vulgaris L.) to different water deficits during storage root development. Acta Agron Sin, 2016, 42: 1727-1732 (in Chinese with English abstract).
[37] 方梓行, 何春阳, 刘志锋, 赵媛媛, 杨延杰. 中国北方农牧交错带气候变化特点及未来趋势: 基于观测和模拟资料的综合分析. 自然资源学报, 2020, 35: 358-370.
doi: 10.31497/zrzyxb.20200209
Fang Z H, He C Y, Liu Z F, Zhao Y Y, Yang Y J. Climate change and future trends in the Agro-Pastoral Transitional Zone in Northern China: the comprehensive analysis with the historical observation and the model simulation. J Nat Resour, 2020, 35: 358-370 (in Chinese with English abstract).
[38] Leakey A D B, Ainsworth E A, Bernacchi C J, Rogers A, Long S P, Ort D R. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot, 2009, 60: 2859-2876.
[39] 张春雨, 李彦生, 于镇华, 刘俊杰, 王光华, 刘晓冰, 吴俊江, 殷奎德, 金剑. 大气CO2浓度和温度升高影响作物产量的光合生理及分子生物学机制. 土壤与作物, 2021, 10(3): 256-265.
Zhang C Y, Li Y S, Yu Z H, Liu J J, Wang G H, Liu X B, Wu J J, Yin K D, Jin J. Mechanism of photosynthetic physiology and molecular biology of crop yield as affected by elevated atmospheric CO2 concentration and temperature: a review. Soil Crop, 2021, 10(3): 256-265 (in Chinese with English abstract).
[40] 张凯, 王润元, 冯起, 王鹤龄, 赵鸿, 赵福年, 阳伏林, 雷俊. 模拟增温和降水变化对半干旱区春小麦生长及产量的影响. 农业工程学报, 2015, 31(增刊1): 161-170.
Zhang K, Wang R Y, Feng Q, Wang H L, Zhao H, Zhao F N, Yang F L, Lei J. Effects of simulated warming and precipitation change on growth characteristics and grain yield of spring wheat in semi-arid area. Trans CSAE, 2015, 31(S1): 161-170 (in Chinese with English abstract).
[41] 齐安银, 曾庆晨, 李颜秘, 向达兵, 万燕, 邹亮. 饲用燕麦栽培技术研究进展. 成都大学学报(自然科学版), 2022, 41: 250-256.
Qi A Y, Zeng Q C, Li Y M, Xiang D B, Wan Y, Zou L. Research progress on cultivation of forage oats (Avena sativa). J Chengdu Univ (Nat Sci Edn), 2022, 41: 250-256 (in Chinese with English abstract).
[42] 李刚, 郑敏娜, 李荫藩. 饲用燕麦品种在晋北农牧交错区的生产性能和营养价值研究. 中国农业科技导报, 2021, 23(12): 42-53.
Li G, Zheng M N, Li Y F. Comprehensive evaluation of production performance and nutritional value of forage oat varieties in northern Shanxi Province. J Agric Sci Technol, 2021, 23(12): 42-53 (in Chinese with English abstract).
[43] 刘夏琳. 四个饲用燕麦品种在晋北农牧交错带的农艺性状和品质比较分析. 山西农业大学硕士学位论文, 山西太谷, 2020.
Liu X L. The Comparison and Analysis of Agronomic Traits and Quality among Four Forage Oats Varieties in the Agro-pastoral Ecotone of Northern Shanxi. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2020 (in Chinese with English abstract).
[44] Qin P H, Xie Z H, Zou J, Liu S, Chen S. Future precipitation extremes in China under climate change and their physical quantification based on a regional climate model and CMIP5 model simulations. Adv Atmosph Sci, 2021, 38: 460-479.
[1] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[2] 刘春燕, 张利影, 周杰, 许依, 杨亚东, 曾昭海, 臧华栋. 豆科作物轮作强化农田生态系统功能的研究进展[J]. 作物学报, 2024, 50(8): 1885-1895.
[3] 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477.
[4] 陈婷, 焦艳阳, 周鑫烨, 吴林坤, 张重义, 林煜, 林生, 林文雄. 不同土壤强化处理对连作太子参生长发育的影响及其效果评价[J]. 作物学报, 2023, 49(8): 2225-2239.
[5] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[6] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
[7] 刘二华, 周广胜, 武炳义, 宋艳玲, 何奇瑾, 吕晓敏, 周梦子. 1981—2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应[J]. 作物学报, 2023, 49(5): 1305-1315.
[8] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[9] 杨雪宁, 张永强, 张选泽, 马宁, 张俊梅. 基于留一交叉验证法的APSIM-Maize产量模拟[J]. 作物学报, 2023, 49(10): 2854-2860.
[10] 赵影星, 王彪, 刘晴, 宋彤, 张学鹏, 陈源泉, 隋鹏. 黑龙港平原基于麦-玉复种的两年轮作模式农田水分消耗特征研究[J]. 作物学报, 2022, 48(7): 1787-1779.
[11] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 王玉珑, 于爱忠, 吕汉强, 王琦明, 苏向向, 柴强. 绿洲灌区小麦秸秆还田与耕作措施对玉米产量的影响[J]. 作物学报, 2022, 48(10): 2671-2679.
[14] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[15] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!