作物学报 ›› 2024, Vol. 50 ›› Issue (2): 363-372.doi: 10.3724/SP.J.1006.2024.33022
摘要:
提高产量是玉米育种的长期目标, 解析产量相关性状及其配合力的遗传基础对选育高产玉米新品种具有重要意义。本研究选用123份玉米自交系和8份测验种作为亲本, 根据NCII (North Carolina design II)获得540份杂交种为材料, 在新乡和周口试验田调查F1杂交种的单穗粒重、单穗重、百粒重、行粒数等8个产量及构成性状, 利用玉米5.5K液相育种芯片检测亲本基因型, 推断F1杂交种的基因型, 利用BLINK (Bayesian information and linkage-disequilibrium iteratively nested keyway)加性和显性模型开展F1杂交种表型与其特殊配合力(special combining ability, SCA)的全基因组关联分析。结果表明, 利用加性和显性模型对F1杂交种分别检测到10个和31个显著关联位点。利用显性模型检测到8个SNPs (single nucleotide polymorphisms)与SCA显著关联。不同性状和模型间共定位位点有7个, 其中1个为单穗重与其SCA同时关联位点。通过对主效和共定位SNPs的扫描, 共鉴定到26个候选基因, 其中转录因子MYBR85、NLP9、PHD3、生长素上调小RNA (SAUR11和SAUR12)、FCS-like锌指蛋白基因FLZ16等可能是控制F1杂交种产量性状与其SCA的重要候选基因。
[1] |
Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis. Plant Cell, 2003, 15: 2236-2239.
doi: 10.1105/tpc.151030 pmid: 14523245 |
[2] |
Sprague G F, Tatum L A. General vs specific combining ability in single crosse of corn. J Am Soc Agron, 1942, 34: 923-932.
doi: 10.2134/agronj1942.00021962003400100008x |
[3] |
李周帅, 董远, 李婷, 冯志前, 段迎新, 杨明羡, 徐淑兔, 张兴华, 薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析. 中国农业科学, 2022, 55: 1695-1709.
doi: 10.3864/j.issn.0578-1752.2022.09.001 |
Li Z S, Dong Y, Li T, Feng Z Q, Duan Y X, Yang M X, Xu S T, Zhang X H, Xue J Q. Genome-wide association analysis of yield and combining ability based on maize hybrid population. Sci Agric Sin, 2022, 55: 1695-1709 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.09.001 |
|
[4] |
Navarro J A R, Wilcox M, Burgueño J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado H V, Vidal V, Ortega A, Banda A E, Montiel N O G, Ortiz-Monasterio I, Vicente F S, Espinoza A G, Atlin G, Wenzl P, Hearne S, Buckler E S. Corrigendum: a study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet, 2017, 49: 970.
doi: 10.1038/ng0617-970c pmid: 28546574 |
[5] |
Xiao Y, Jiang S, Cheng Q, Wang X, Yan J, Zhang R, Qiao F, Ma C, Luo J, Li W, Liu H, Yang W, Song W, Meng Y, Warburton M L, Zhao J, Wang X, Yan J. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol, 2021, 22: 148.
doi: 10.1186/s13059-021-02370-7 pmid: 33971930 |
[6] |
李婷, 王亚鹏, 董远, 郭瑞士, 李冬梅, 唐雅伶, 张兴华, 薛吉全, 徐淑兔. 基于杂交群体解析玉米籽粒大小相关性状及其配合力的分子遗传机制. 作物学报, 2022, 48: 2451-2462.
doi: 10.3724/SP.J.1006.2022.13052 |
Li T, Wang Y P, Dong Y, Guo R S, Li D M, Tang Y L, Zhang X H, Xue J Q, Xu S T. Dissecting the genetic basis of kernel size related traits and their combining ability based on a hybrid population in maize. Acta Agron Sin, 2022, 48: 2451-2462 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13052 |
|
[7] |
李婷, 董远, 张君, 冯志前, 王亚鹏, 郝引川, 张兴华, 薛吉全, 徐淑兔. 玉米杂交种穗部性状的全基因组关联分析. 中国农业科学, 2022, 55: 2485-2499.
doi: 10.3864/j.issn.0578-1752.2022.13.001 |
Li T, Dong Y, Zhang J, Feng Z Y, Wang Y P, Hao Y C, Zhang X H, Xue J Q, Xu S T. Genome-wide association study of ear related traits in maize hybrids. Sci Agric Sin, 2022, 55: 2485-2499 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.13.001 |
|
[8] |
Zhang Y, Wan J, He L, Lan H, Li L. Genome-wide association analysis of plant height using the maize F1 population. Plants, 2019, 8: 432.
doi: 10.3390/plants8100432 |
[9] | 卢雨晴, 崔淑娜, 张红伟, 郑军, 潘金豹, 张秋芝. 利用杂交种群体解析玉米酸性洗涤纤维含量的遗传基础. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220512.1531.030.html. |
Lu Y Q, Cui S N, Zhang H W, Zheng J, Pan J B, Zhang Q Z. The genetic basis of acid detergent fiber content in maize was analysed using hybrid populations, Mol Plant Breed, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220512.1531.030.html (in Chinese with English abstract). | |
[10] |
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[11] |
Ma J, Cao Y, Wang Y, Ding Y. Development of the maize 5.5K loci panel for genomic prediction through genotyping by target sequencing. Front Plant Sci, 2022, 13: 972791.
doi: 10.3389/fpls.2022.972791 |
[12] | Huang M, Liu X, Zhou Y, Summers R M, Zhang Z. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 2019, 8: giy154. |
[13] |
Yi Q, Liu Y, Hou X, Zhang X, Li H, Zhang J, Liu H, Hu Y, Yu G, Li Y, Wang Y, Huang Y. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). BMC Plant Biol, 2019, 19: 392.
doi: 10.1186/s12870-019-2009-2 |
[14] |
Li D, Zhou Z, Lu X, Jiang Y, Li G, Li J, Wang H, Chen S, Li X, Würschum T, Reif J C, Xu S, Li M, Liu W. Genetic dissection of hybrid performance and heterosis for yield-related traits in maize. Front Plant Sci, 2021, 12: 774478.
doi: 10.3389/fpls.2021.774478 |
[15] |
Zhang L, Liu G, Jia J, Zhao G, Xia C, Zhang L, Li F, Zhang Q, Dong C, Gao S, Han L, Guo X, Zhang X, Wu J, Liu X, Kong X. The wheat MYB-related transcription factor TaMYB72 promotes flowering in rice. J Integr Plant Biol, 2016, 58: 701-704.
doi: 10.1111/jipb.v58.8 |
[16] |
Liu K H, Liu M, Lin Z, Wang Z F, Chen B, Liu C, Guo A, Konishi M, Yanagisawa S, Wagner G, Sheen J. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science, 2022, 377: 1419-1425.
doi: 10.1126/science.add1104 |
[17] |
Chen S, Li X, Yang C, Yan W, Liu C, Tang X, Gao C. Genome-wide identification and characterization of FCS-Like zinc finger (FLZ) Family genes in maize (Zea mays) and functional analysis of ZmFLZ25 in plant abscisic acid response. Int J Mol Sci, 2021, 22: 3529.
doi: 10.3390/ijms22073529 |
[18] | Ma Y, Dong J, Yang W, Chen L, Wu W, Li W, Zhou L, Wang J, Chen J, Yang T, Zhang S, Zhao J, Liu B. OsFLZ2interacts with OsMADS51 to fine-tune rice flowering time. Development, 2022, 149: dev200862. |
[19] |
Fernández Gómez J, Wilson Z A. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J, 12: 765-777.
doi: 10.1111/pbi.2014.12.issue-6 |
[20] |
Zhao J, Li W, Sun S, Peng L, Huang Z, He Y, Wang Z. The rice small auxin-up RNA gene OsSAUR33 regulates seed vigor via sugar pathway during early seed germination. Int J Mol Sci, 2021, 22: 1562.
doi: 10.3390/ijms22041562 |
[21] |
Chae K, Isaacs C G, Reeves P H, Maloney G S, Muday G K, Nagpal P, Reed J W. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J, 2012, 71: 684-697.
doi: 10.1111/tpj.2012.71.issue-4 |
[22] |
Raju S K K, Shao M R, Sanchez R, Xu Y Z, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J, 2018, 16: 1836-1847.
doi: 10.1111/pbi.12919 pmid: 29570925 |
[23] | 吴律, 代力强, 董青松, 施婷婷. 王丕武玉米行粒数的全基因组关联分析. 作物学报, 2017, 43: 1559-1564. |
Wu L, Dai L Q, Dong Q S, Shi T T. Genome-wide association analysis of kernel number per pow in maize. Acta Agron Sin, 2017, 43: 1559-1564 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01559 |
|
[24] |
马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析. 作物学报, 2023, 49: 647-661.
doi: 10.3724/SP.J.1006.2023.23023 |
Ma Y J, Bao J X, Gao Y X, Li Y N, Qin W X, Wang Y B, Long Y, Li J P, Dong Z Y, Wang X Y. Genome-wide association analysis of plant height and ear height related traits in maize. Acta Agron Sin, 2023, 49: 647-661 (in Chinese with English abstract). |
[1] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[2] | 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632. |
[3] | 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733. |
[4] | 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化,是偶然还是与农艺性状存在关联? ——以历年国审普通品种为例 [J]. 作物学报, 2024, 50(3): 771-778. |
[5] | 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612. |
[6] | 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362. |
[7] | 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382. |
[8] | 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66. |
[9] | 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99. |
[10] | 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186. |
[11] | 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264. |
[12] | 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88. |
[13] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[14] | 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445. |
[15] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
|