欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 363-372.doi: 10.3724/SP.J.1006.2024.33022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米杂交群体产量性状及其特殊配合力全基因组关联分析

马娟*(), 曹言勇   

  1. 河南省农业科学院粮食作物研究所, 河南郑州 450002
  • 收稿日期:2023-04-06 接受日期:2023-09-13 出版日期:2024-02-12 网络出版日期:2023-09-28
  • 通讯作者: *马娟, E-mail: majuanjuan85@126.com
  • 基金资助:
    河南省科技攻关项目(222102110043);河南省农业科学院优秀青年基金项目(2020YQ04)

Genome-wide association study of yield traits and special combining ability in maize hybrid population

MA Juan*(), CAO Yan-Yong   

  1. Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2023-04-06 Accepted:2023-09-13 Published:2024-02-12 Published online:2023-09-28
  • Contact: *E-mail: majuanjuan85@126.com
  • Supported by:
    Science and Technology Project of Henan Province(222102110043);Science-Technology Foundation for Outstanding Young Scientists of Henan Academy of Agricultural Sciences(2020YQ04)

摘要:

提高产量是玉米育种的长期目标, 解析产量相关性状及其配合力的遗传基础对选育高产玉米新品种具有重要意义。本研究选用123份玉米自交系和8份测验种作为亲本, 根据NCII (North Carolina design II)获得540份杂交种为材料, 在新乡和周口试验田调查F1杂交种的单穗粒重、单穗重、百粒重、行粒数等8个产量及构成性状, 利用玉米5.5K液相育种芯片检测亲本基因型, 推断F1杂交种的基因型, 利用BLINK (Bayesian information and linkage-disequilibrium iteratively nested keyway)加性和显性模型开展F1杂交种表型与其特殊配合力(special combining ability, SCA)的全基因组关联分析。结果表明, 利用加性和显性模型对F1杂交种分别检测到10个和31个显著关联位点。利用显性模型检测到8个SNPs (single nucleotide polymorphisms)与SCA显著关联。不同性状和模型间共定位位点有7个, 其中1个为单穗重与其SCA同时关联位点。通过对主效和共定位SNPs的扫描, 共鉴定到26个候选基因, 其中转录因子MYBR85NLP9PHD3、生长素上调小RNA (SAUR11SAUR12)、FCS-like锌指蛋白基因FLZ16等可能是控制F1杂交种产量性状与其SCA的重要候选基因。

关键词: 玉米, 杂交种, 特殊配合力, 全基因组关联分析

Abstract:

Increasing yield is the long-term goal of maize breeding. It is important to analyze the genetic basis of yield-related traits and combining ability for breeding new maize varieties with high yield. In this study, 123 maize inbred lines and eight tester lines were selected as the experimental parents, and 540 hybrids were obtained according to NCII (North Carolina design II). The F1 hybrids were investigated at the Xinxiang and Zhoukou experimental fields for eight yield and component traits, including kernel weight per ear, ear weight, 100-kernel weight, and kernel number per row. Parental genotypes were detected using maize 5.5K liquid breeding chip, and the genotypes of F1 hybrids were inferred. The additive and dominant models of BLINK (Bayesian information and links-disequilibrium iteratively nested keyway) were used to conduct genome-wide association study of the F1 hybrid phenotypes and special combining ability (SCA). The results showed that 10 and 31 significant association loci were detected by additive and dominant models for F1 hybrids, respectively. Eight SNPs (single nucleotide polymorphisms) were significantly associated with SCA using the dominant model. There were seven co-detected loci among different traits and models, and one of them was co-detected between ear weight and SCA. A total of 26 candidate genes were identified by scanning the major-effect and co-detected SNPs. Among them, transcription factors MYBR85, NLP9, PHD3, auxin up-regulated small RNA (SAUR11 and SAUR12), and FCS-like zinc finger protein gene FLZ16 may be important candidate genes for controlling yield traits and SCA of F1 hybrid.

Key words: maize, hybrid, special combining ability, genome-wide association study

图1

主成分分析"

表1

不同性状之间的相关系数"

性状Trait 单穗粒重KWE 单穗重EW 百粒重HKW 行粒数KNR 穗长EL 穗粗ED 粒长KL 粒宽KW
单穗粒重KWE 0.62*** 0.98*** 0.63*** 0.41*** 0.53*** 0.46*** 0.59*** 0.61***
单穗重EW 0.96*** 0.61*** 0.64*** 0.39*** 0.55*** 0.49*** 0.56*** 0.60***
百粒重HKW 0.32*** 0.33*** 0.72*** 0.10* 0.23*** 0.34*** 0.49*** 0.69***
行粒数KNR 0.42*** 0.43*** 0.02 0.87*** 0.64 -0.04 0.04 0.28***
穗长EL 0.57*** 0.60*** 0.13** 0.62*** 0.84*** -0.01 -0.03 0.33***
穗粗ED 0.43*** 0.44*** 0.28*** 0.01 0.04 0.77*** 0.38*** 0.15***
粒长KL 0.51*** 0.48*** 0.25*** 0.00 -0.01 0.42*** 0.70*** 0.43***
粒宽KW 0.24*** 0.28*** 0.45*** 0.12* 0.19*** 0.13*** 0.18*** 0.65***

表2

F1杂交种性状和特殊配合力显著关联SNPs"

性状
Trait
SNP名称
SNP name
最小等位基因频率
Minor allele frequency
P
P-value
模型
Model
表型变异解释率
Phenotypic variance explained (%)
KWE 3_229718911 0.18 2.15E-09 F1_ADD 19.62
KWE 10_2362594 0.21 2.26E-06 F1_ADD 8.59
EW 2_172799260 0.15 8.42E-15 F1_ADD 81.65
EW 4_245349341 0.25 9.06E-07 F1_ADD 1.70
HKW 6_163896721 0.16 1.10E-06 F1_ADD 19.58
HKW 7_180299 0.38 2.59E-06 F1_ADD 16.62
EL 3_223382067 0.33 9.11E-07 F1_ADD 17.64
EL 8_170590897 0.45 3.62E-08 F1_ADD 11.14
KW 9_158819519 0.10 2.38E-09 F1_ADD 27.30
KW 10_140869639 0.47 4.97E-06 F1_ADD 0.34
KWE 1_3495500 0.39 6.77E-08 F1_DOM 2.48
KWE 1_224025559 0.44 2.30E-06 F1_DOM 1.80
KWE 2_35999586 0.41 1.75E-06 F1_DOM 10.33
KWE 3_151476859 0.38 1.74E-10 F1_DOM 15.39
KWE 4_124715480 0.42 1.78E-09 F1_DOM 3.64
KWE 4_245349341 0.25 1.49E-19 F1_DOM 2.06
KWE 7_9222599 0.29 1.12E-09 F1_DOM 0.81
KWE 8_135270440 0.23 1.61E-07 F1_DOM 13.22
EW 10_128608741 0.36 1.32E-09 F1_DOM 33.90
KNR 9_126752677 0.24 4.23E-08 F1_DOM 4.89
HKW 1_263446521 0.34 1.03E-07 F1_DOM 5.90
HKW 4_158534508 0.30 8.54E-08 F1_DOM 1.35
HKW 4_245349341 0.25 9.78E-12 F1_DOM 7.04
HKW 8_173023129 0.38 1.78E-06 F1_DOM 23.62
EL 1_286265360 0.26 4.50E-06 F1_DOM 0.39
EL 2_215919932 0.39 1.66E-09 F1_DOM 0.97
EL 2_240628723 0.45 2.89E-08 F1_DOM 2.51
EL 3_229718911 0.32 5.19E-18 F1_DOM 4.02
EL 3_231983795 0.43 1.28E-10 F1_DOM 2.57
EL 5_25546627 0.20 2.57E-06 F1_DOM 0.92
EL 8_1358238 0.39 2.49E-06 F1_DOM 0.98
EL 8_1358337 0.39 2.49E-06 F1_DOM 0.90
EL 8_11330000 0.39 2.49E-06 F1_DOM 0
EL 8_11330024 0.39 2.49E-06 F1_DOM 0.56
ED 9_126752677 0.24 8.12E-08 F1_DOM 1.23
KL 2_202588564 0.40 5.09E-07 F1_DOM 2.12
KL 4_124715480 0.42 3.11E-08 F1_DOM 5.18
KL 7_23591153 0.34 1.63E-09 F1_DOM 3.37
KL 10_119211470 0.27 7.08E-10 F1_DOM 1.61
KL 10_140869698 0.23 1.87E-07 F1_DOM 2.41
KW 1_263446521 0.34 5.66E-07 F1_DOM 4.41
KW 2_9499620 0.42 1.12E-07 F1_DOM 2.06
KW 3_229718911 0.32 5.27E-06 F1_DOM 0
KW 5_1099333 0.42 2.14E-08 F1_DOM 3.62
KW 6_105844375 0.40 2.78E-06 F1_DOM 3.18
KW 9_158819519 0.40 1.86E-07 F1_DOM 1.86
SCA_EW 2_2038269 0.20 1.48E-07 SCA_DOM 6.15
SCA_EW 4_3412671 0.28 3.44E-07 SCA_DOM 21.19
SCA_EW 6_75433362 0.25 1.03E-07 SCA_DOM 3.16
SCA_EW 10_128608741 0.36 1.40E-06 SCA_DOM 3.86
SCA_EL 2_226466002 0.28 1.32E-10 SCA_DOM 23.09
SCA_ED 7_13827332 0.29 9.09E-07 SCA_DOM 35.86
SCA_ED 8_179883706 0.36 2.54E-07 SCA_DOM 7.85
SCA_KL 6_67818656 0.27 8.19E-07 SCA_DOM 16.80

表3

主效和共定位SNPs挖掘的候选基因"

性状
Trait
SNP名称
SNP name
候选基因
Candidate gene
KWE_F1_ADD, EL_F1_DOM, KW_F1_DOM 3_229718911 Zm00001d044497 (thioredoxin family Trp26)
EW_F1_ADD 2_172799260 Unknown
HKW_F1_ADD 6_163896721 Zm00001d038753 (ubiquitin domain containing 1)
HKW_F1_ADD 7_180299 Zm00001d018595 (sulfoquinovosyl transferase SQD2)
EL_F1_ADD 3_223382067 Zm00001d044267 (glyoxylate/succinic semialdehyde reductase 2)
EL_F1_ADD 8_170590897 Zm00001d012232, Zm00001d012233 (PHD finger protein)
KW_F1_ADD, KW_F1_DOM 9_158819519 Zm00001d048563
KWE_F1_DOM 2_35999586 Unknown
KWE_F1_DOM 3_151476859 Zm00001d042114, Zm00001d042115, Zm00001d042116 (U-box domain-containing protein 44)
KWE_F1_DOM 8_135270440 Zm00001d010967 (MYB-related-transcription factor 85)
EW_F1_DOM, EW_SCA_DOM 10_128608741 Zm00001d025757 (NLP-transcription factor 9)
HKW_F1_DOM 8_173023129 Zm00001d012361, Zm00001d012362 (O-fucosyltransferase 19)
EW_F1_ADD, KWE_F1_DOM, HKW_F1_DOM 4_245349341 Zm00001d054032, Zm00001d054033 (DNA-directed RNA polymerase II 16 kDa polypeptide), Zm00001d054034
KWE_F1_DOM, KL_F1_DOM 4_124715480 Zm00001d050822 (CLP protease regulatory subunit CLPX3), Zm00001d050823
HKW_F1_DOM, KW_F1_DOM 1_263446521 Zm00001d033463 (small auxin up RNA11), Zm00001d033464 (small auxin up RNA12), Zm00001d033465
KNR_F1_DOM, ED_F1_DOM 9_126752677 Unknown
EW_SCA_DOM 4_3412671 Zm00001d048693 (senescence-associated protein OSA15), Zm00001d048694 (FCS-like zinc finger16)
EL_SCA_DOM 2_226466002 Zm00001d007274 (F-box/kelch-repeat protein At2g44130-like)
ED_SCA_DOM 7_13827332 Zm00001d019039 (PHD-transcription factor 3)
KL_SCA_DOM 6_67818656 Unknown

图2

主效和共定位SNPs优异等位基因分析 缩略词同表1。"

[1] Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis. Plant Cell, 2003, 15: 2236-2239.
doi: 10.1105/tpc.151030 pmid: 14523245
[2] Sprague G F, Tatum L A. General vs specific combining ability in single crosse of corn. J Am Soc Agron, 1942, 34: 923-932.
doi: 10.2134/agronj1942.00021962003400100008x
[3] 李周帅, 董远, 李婷, 冯志前, 段迎新, 杨明羡, 徐淑兔, 张兴华, 薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析. 中国农业科学, 2022, 55: 1695-1709.
doi: 10.3864/j.issn.0578-1752.2022.09.001
Li Z S, Dong Y, Li T, Feng Z Q, Duan Y X, Yang M X, Xu S T, Zhang X H, Xue J Q. Genome-wide association analysis of yield and combining ability based on maize hybrid population. Sci Agric Sin, 2022, 55: 1695-1709 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.09.001
[4] Navarro J A R, Wilcox M, Burgueño J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado H V, Vidal V, Ortega A, Banda A E, Montiel N O G, Ortiz-Monasterio I, Vicente F S, Espinoza A G, Atlin G, Wenzl P, Hearne S, Buckler E S. Corrigendum: a study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet, 2017, 49: 970.
doi: 10.1038/ng0617-970c pmid: 28546574
[5] Xiao Y, Jiang S, Cheng Q, Wang X, Yan J, Zhang R, Qiao F, Ma C, Luo J, Li W, Liu H, Yang W, Song W, Meng Y, Warburton M L, Zhao J, Wang X, Yan J. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol, 2021, 22: 148.
doi: 10.1186/s13059-021-02370-7 pmid: 33971930
[6] 李婷, 王亚鹏, 董远, 郭瑞士, 李冬梅, 唐雅伶, 张兴华, 薛吉全, 徐淑兔. 基于杂交群体解析玉米籽粒大小相关性状及其配合力的分子遗传机制. 作物学报, 2022, 48: 2451-2462.
doi: 10.3724/SP.J.1006.2022.13052
Li T, Wang Y P, Dong Y, Guo R S, Li D M, Tang Y L, Zhang X H, Xue J Q, Xu S T. Dissecting the genetic basis of kernel size related traits and their combining ability based on a hybrid population in maize. Acta Agron Sin, 2022, 48: 2451-2462 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13052
[7] 李婷, 董远, 张君, 冯志前, 王亚鹏, 郝引川, 张兴华, 薛吉全, 徐淑兔. 玉米杂交种穗部性状的全基因组关联分析. 中国农业科学, 2022, 55: 2485-2499.
doi: 10.3864/j.issn.0578-1752.2022.13.001
Li T, Dong Y, Zhang J, Feng Z Y, Wang Y P, Hao Y C, Zhang X H, Xue J Q, Xu S T. Genome-wide association study of ear related traits in maize hybrids. Sci Agric Sin, 2022, 55: 2485-2499 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.13.001
[8] Zhang Y, Wan J, He L, Lan H, Li L. Genome-wide association analysis of plant height using the maize F1 population. Plants, 2019, 8: 432.
doi: 10.3390/plants8100432
[9] 卢雨晴, 崔淑娜, 张红伟, 郑军, 潘金豹, 张秋芝. 利用杂交种群体解析玉米酸性洗涤纤维含量的遗传基础. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220512.1531.030.html.
Lu Y Q, Cui S N, Zhang H W, Zheng J, Pan J B, Zhang Q Z. The genetic basis of acid detergent fiber content in maize was analysed using hybrid populations, Mol Plant Breed, 2022, https://kns.cnki.net/kcms/detail/46.1068.s.20220512.1531.030.html (in Chinese with English abstract).
[10] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[11] Ma J, Cao Y, Wang Y, Ding Y. Development of the maize 5.5K loci panel for genomic prediction through genotyping by target sequencing. Front Plant Sci, 2022, 13: 972791.
doi: 10.3389/fpls.2022.972791
[12] Huang M, Liu X, Zhou Y, Summers R M, Zhang Z. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 2019, 8: giy154.
[13] Yi Q, Liu Y, Hou X, Zhang X, Li H, Zhang J, Liu H, Hu Y, Yu G, Li Y, Wang Y, Huang Y. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). BMC Plant Biol, 2019, 19: 392.
doi: 10.1186/s12870-019-2009-2
[14] Li D, Zhou Z, Lu X, Jiang Y, Li G, Li J, Wang H, Chen S, Li X, Würschum T, Reif J C, Xu S, Li M, Liu W. Genetic dissection of hybrid performance and heterosis for yield-related traits in maize. Front Plant Sci, 2021, 12: 774478.
doi: 10.3389/fpls.2021.774478
[15] Zhang L, Liu G, Jia J, Zhao G, Xia C, Zhang L, Li F, Zhang Q, Dong C, Gao S, Han L, Guo X, Zhang X, Wu J, Liu X, Kong X. The wheat MYB-related transcription factor TaMYB72 promotes flowering in rice. J Integr Plant Biol, 2016, 58: 701-704.
doi: 10.1111/jipb.v58.8
[16] Liu K H, Liu M, Lin Z, Wang Z F, Chen B, Liu C, Guo A, Konishi M, Yanagisawa S, Wagner G, Sheen J. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science, 2022, 377: 1419-1425.
doi: 10.1126/science.add1104
[17] Chen S, Li X, Yang C, Yan W, Liu C, Tang X, Gao C. Genome-wide identification and characterization of FCS-Like zinc finger (FLZ) Family genes in maize (Zea mays) and functional analysis of ZmFLZ25 in plant abscisic acid response. Int J Mol Sci, 2021, 22: 3529.
doi: 10.3390/ijms22073529
[18] Ma Y, Dong J, Yang W, Chen L, Wu W, Li W, Zhou L, Wang J, Chen J, Yang T, Zhang S, Zhao J, Liu B. OsFLZ2interacts with OsMADS51 to fine-tune rice flowering time. Development, 2022, 149: dev200862.
[19] Fernández Gómez J, Wilson Z A. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J, 12: 765-777.
doi: 10.1111/pbi.2014.12.issue-6
[20] Zhao J, Li W, Sun S, Peng L, Huang Z, He Y, Wang Z. The rice small auxin-up RNA gene OsSAUR33 regulates seed vigor via sugar pathway during early seed germination. Int J Mol Sci, 2021, 22: 1562.
doi: 10.3390/ijms22041562
[21] Chae K, Isaacs C G, Reeves P H, Maloney G S, Muday G K, Nagpal P, Reed J W. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J, 2012, 71: 684-697.
doi: 10.1111/tpj.2012.71.issue-4
[22] Raju S K K, Shao M R, Sanchez R, Xu Y Z, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J, 2018, 16: 1836-1847.
doi: 10.1111/pbi.12919 pmid: 29570925
[23] 吴律, 代力强, 董青松, 施婷婷. 王丕武玉米行粒数的全基因组关联分析. 作物学报, 2017, 43: 1559-1564.
Wu L, Dai L Q, Dong Q S, Shi T T. Genome-wide association analysis of kernel number per pow in maize. Acta Agron Sin, 2017, 43: 1559-1564 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01559
[24] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析. 作物学报, 2023, 49: 647-661.
doi: 10.3724/SP.J.1006.2023.23023
Ma Y J, Bao J X, Gao Y X, Li Y N, Qin W X, Wang Y B, Long Y, Li J P, Dong Z Y, Wang X Y. Genome-wide association analysis of plant height and ear height related traits in maize. Acta Agron Sin, 2023, 49: 647-661 (in Chinese with English abstract).
[1] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[2] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[3] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[4] 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化,是偶然还是与农艺性状存在关联? ——以历年国审普通品种为例 [J]. 作物学报, 2024, 50(3): 771-778.
[5] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[6] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[7] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[8] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[9] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[10] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[11] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[12] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[13] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[14] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[15] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[8] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[9] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[10] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .