欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 493-505.doi: 10.3724/SP.J.1006.2024.24273

• 耕作栽培·生理生化 • 上一篇    下一篇

种植密度对角果期弱光胁迫油菜籽粒油脂积累的影响

聂晓玉1(), 李真1, 王天尧2, 周元委3, 徐正华1, 王晶1, 汪波1, 蒯婕1,*(), 周广生1   

  1. 1华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
    2荆州农业科学院, 湖北荆州 434000
    3宜昌市农业科学研究院, 湖北宜昌 420500
  • 收稿日期:2022-12-10 接受日期:2023-09-13 出版日期:2024-02-12 网络出版日期:2023-09-28
  • 通讯作者: *蒯婕, E-mail: kuaijie@mail.hzau.edu.cn
  • 作者简介:E-mail: 2533621735@qq.com
  • 基金资助:
    国家自然科学基金项目(31871565);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12)

Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed

NIE Xiao-Yu1(), LI Zhen1, WANG Tian-Yao2, ZHOU Yuan-Wei3, XU Zheng-Hua1, WANG Jing1, WANG Bo1, KUAI Jie1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Jingzhou Academy of Agricultural Sciences, Jingzhou 434000, Hubei, China
    3Yichang Academy of Agricultural Sciences, Yichang 420500, Hubei, China
  • Received:2022-12-10 Accepted:2023-09-13 Published:2024-02-12 Published online:2023-09-28
  • Contact: *E-mail: kuaijie@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31871565);China Agriculture Research System of MOF and MARA(CARS-12)

摘要:

角果期光照不足显著影响油菜籽粒含油量, 而增加种植密度具有明显的增产效果, 但其对角果期弱光胁迫下籽粒含油量的影响未见报道。本试验选用华油杂62和沣油520两个品种进行大田试验, 设置3个种植密度(15×104、30×104、45×104株 hm-2)和2个光照强度(透光率为100%, LT100%和花后10~35 d透光率为70%, LT70%), 从籽粒碳代谢和油脂代谢角度, 研究种植密度对角果期弱光胁迫下油菜籽粒含油量的影响机制。结果表明: 与LT100%相比, LT70%处理下2个品种花后25 d、35 d时籽粒叶绿素含量、核酮糖-1,5-二磷酸核酮糖羧化酶(Ribulose 1,5-bisphosphate carboxylase, Rubisco)活性降低, 光合速率下降, 光合产物葡萄糖含量降低0.4%~27.9%; 蔗糖合成酶(Sucrose synthase, SuSy)分解活性降低, 导致果糖含量降低了4.8%~24.5%, 减少了籽粒碳水化合物积累与转运, 同时磷脂酸磷酸酯酶(Phosphatidate phosphatase, PPase)、6-磷酸葡萄糖脱氢酶(Glucose-6-phosphate dehydrogenase, G6PDH)活性降低, 导致含油量降低2.1%~11.8%, 油脂产量降低27.0%~35.3%。与低密度遮阴相比, 高密度LT70%处理下籽粒的Rubisco、SuSy活性降幅变小, 但籽粒G6PDH和PPase活性降幅变大。这些结果表明, 在本试验条件下, 通过增加密度可以缓解弱光对籽粒光合碳代谢的抑制, 通过增加群体产量缓解弱光胁迫下产油量的损失。

关键词: 种植密度, 遮阴, 碳代谢, 含油量, 产油量

Abstract:

The seed oil content of rapeseed is affected by insufficient light at pod-filling stage, while more seeds can be harvested with the increasing planting density. The interaction of pod shading and planting density on the mechanism that affecting seed oil content has not been reported. The objective of this study is to study the effect of density on seed carbon and lipid metabolism of shaded rapeseed at pod-filling stage. In this experiment, two varieties (Huayouza 62, H, and Fengyou 520, F) were selected, and three levels of densities (15×104, 30×104, and 45×104 plants hm-2) and two light intensities (100% light transmission, LT100%, and 70% light transmission from 10-35 d after terminating flowering, LT70%) were conducted in a field trial. The results showed that pod shading caused a decrease in seed chlorophyll content, the activity of ribulose 1,5-bisphosphate carboxylase (Rubisco) at 25 days and 35 days after flowering (DAF) of both varieties, leading to 0.4%-27.9% decrease in glucose content. Meanwhile, the decrease in the activities of sucrose synthase-cleavage (SuSy) and sucrose phosphate synthase (SPS) under shading inhibited sucrose conversion and resulted in a decrease by 4.8%-24.5% in fructose content. The activities of seed phosphatidate phosphatase (PPase) and glucose-6-phosphate dehydrogenase (G6PDH) were also reduced, resulting in 2.1%-11.8% decline in seed oil content and 27.0%-35.3% decline in oil production. Compared with the shading under lower density, the reduction in content of seed chlorophyll, fructose, glucose, and activities of rubisco and SuSy became lower, while the decrease of seed G6PDH and PPase activities became higher at 35DAF, which aggravated the decrease of seed oil content under shading. However, the decline in oil yield was alleviated due to the increase in population yield with denser planting.

Key words: planting density, shade, carbon metabolism, seed oil content, oil yield

表1

种植密度对遮阴下油菜千粒重及产量的影响"

品种
Variety
种植密度Density 透光率
Light transmittance (%)
2018-2019 2019-2020
千粒重
1000-seed weight (g)
单株产量Yield per plant (g) 产量
Yield
(kg hm-2)
千粒重1000-seed weight (g) 单株产量Yield per plant (g) 产量
Yield
(kg hm-2)
华油杂62
Huayouza 62
D1 100 3.82 a 20.93 a 2830.99 c 3.64 a 17.01 a 2351.18 cd
70 3.61 bcd 13.29 c 1858.77 g 3.43 abc 11.65 bc 1607.37 g
D2 100 3.74 ab 11.94 d 3043.79 b 3.58 ab 10.73 c 2738.53 b
70 3.57 bcd 8.78 e 2282.13 ef 3.36 abc 7.46 d 1953.82 f
D3 100 3.65 abc 8.32 e 3127.36 ab 3.46 abc 7.47 d 2818.10 ab
70 3.54 bcde 6.30 f 2385.25 e 3.31 bc 5.56 e 2147.25 e
沣油520
Fengyou 520
D1 100 3.50 cde 19.13 b 2648.42 d 3.42 abc 18.18 a 2516.38 c
70 3.13 f 13.07 c 1836.31 g 3.04 d 12.93 b 1819.22 f
D2 100 3.42 de 11.03 d 2883.23 c 3.36 abc 10.46 c 2822.67 ab
70 3.10 f 8.60 e 2193.83 f 2.99 d 8.07 d 2150.67 e
D3 100 3.35 e 8.49 e 3224.83 a 3.20 cd 7.34 d 2969.94 a
70 3.09 f 6.69 f 2540.54 d 2.97 d 5.78 e 2284.93 de
方差分析 ANOVA
品种Variety (V) ** * NS ** * **
密度Density (D) NS ** ** NS ** **
透光率 Light transmittance (T) ** ** ** ** ** **
V×D NS * ** NS NS NS
V×T NS * NS NS NS NS
D×T NS ** * NS ** NS
V×D×T NS NS NS NS NS NS

图1

种植密度对角果期遮阴油菜籽粒叶绿素含量和叶绿素a/b的影响 H、F分别表示华油杂62和沣油520。D1、D2、D3分别表示种植密度为15、30和45万株 hm-2。LT-100%表示透光率为100%, LT-70%表示透光率为70%。V、D、T、V×D、V×T、D×T、V×D×T分别表示品种、种植密度、透光率以及三者互作效应。不同字母标记表示在0.05概率水平差异显著。*和**分别表示在0.05和0.01概率水平差异显著, NS表示差异不显著。"

图2

种植密度对角果期遮阴油菜籽粒Rubisco、SPS和SuSy活性的影响 H、F分别表示华油杂62和沣油520。D1、D2、D3分别表示种植密度为15、30和45万株 hm-2。LT-100%表示透光率为100%, LT-70%表示透光率为70%。V、D、T、V×D、V×T、D×T、V×D×T分别表示品种、种植密度、透光率以及三者互作效应。不同字母标记表示在0.05概率水平差异显著。*和**分别表示在0.05和0.01概率水平差异显著, NS表示差异不显著。"

图3

种植密度对角果期遮阴油菜籽粒碳水化合物含量的影响 H、F分别表示华油杂62和沣油520。D1、D2、D3分别表示种植密度为15、30和45万株 hm-2。LT-100%表示透光率为100%, LT-70%表示透光率为70%。V、D、T、V×D、V×T、D×T、V×D×T分别表示品种、种植密度、透光率以及三者互作效应。不同字母标记表示在0.05概率水平差异显著。*和**分别表示在0.05和0.01概率水平差异显著, NS表示差异不显著。"

图4

种植密度对角果期遮阴油菜籽粒含油量和油脂产量的影响 H、F分别表示华油杂62 和沣油520。D1、D2、D3分别表示种植密度为15、30和45万株 hm-2。LT-100%表示透光率为100%, LT-70%表示透光率为70%。V、D、T、V×D、V×T、D×T、V×D×T分别表示品种、种植密度、透光率以及三者互作效应。不同字母标记表示在0.05概率水平差异显著。*和**分别表示在0.05和0.01概率水平差异显著, NS表示差异不显著。"

图5

种植密度对角果期遮阴油菜籽粒G6PDH和PPase活性的影响 H、F分别表示华油杂62和沣油520。D1、D2、D3分别表示种植密度为15、30和45万株 hm-2。LT-100%表示透光率为100%, LT-70%表示透光率为70%。V、D、T、V×D、V×T、D×T、V×D×T分别表示品种、种植密度、透光率以及三者互作效应。不同字母标记表示在0.05概率水平差异显著。*和**分别表示在0.05和0.01概率水平差异显著, NS表示差异不显著。"

[1] Amiri-Oghan H, Fotokian M H, Javidfar F, Alizadeh B. Genetic analysis of grain yield, days to flowering and maturity in oilseed rape (Brassica napus L.) using diallel crosses. Int J Plant Prod, 2009, 3: 19-26.
[2] Friedt W, Tu J X, Fu T D. The Brassica napus Genome. Switzerland: Springer Cham, 2018. pp 1-20.
[3] Li X Y, Zuo Q S, Chang H B, Bai G P, Kuai J, Zhou G S. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97-105.
doi: 10.1016/j.fcr.2018.01.013
[4] Liu J D, Linderholm H, Chen D L, Zhou X J, Flerchinger G N, Yu Q, Du J, Wu D R, Shen Y B, Yang Z B. Changes in the relationship between solar radiation and sunshine duration in large cities of China. Energy, 2015, 82: 589-600.
doi: 10.1016/j.energy.2015.01.068
[5] Procko C, Crenshaw C M, Ljung K, Noel J P, Chory J. Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiol, 2014, 165: 1285-1301.
[6] Fortescue J A, Turner D W. Changes in seed size and oil accumulation in Brassica napus L. by manipulating the source-sink ratio and excluding light from the developing siliques. Aust J Agric Res, 2007, 58: 413-424.
doi: 10.1071/AR06249
[7] Verdejo J, Calderini D F. Plasticity of seed weight in winter and spring rapeseed is higher in a narrow but different window after flowering. Field Crops Res, 2020, 250: 107777.
doi: 10.1016/j.fcr.2020.107777
[8] Labra M H, Struik P C, Evers J B, Calderini D F. Plasticity of seed weight compensates reductions in seed number of oilseed rape in response to shading at flowering. Eur J Agron, 2017, 84: 113-124.
doi: 10.1016/j.eja.2016.12.011
[9] Tanaka W, Maddonni G. Maize kernel oil and episodes of shading during the grain-filling period. Crop Sci, 2009, 49: 2187-2197.
doi: 10.2135/cropsci2009.05.0238
[10] Artru S, Garré S, Dupraz C, Hiel M P, Blitz-Frayret C, Lassois L. Impact of spatio-temporal shade dynamics on wheat growth and yield, perspectives for temperate agroforestry. Eur J Agron, 2017, 82: 60-70.
doi: 10.1016/j.eja.2016.10.004
[11] Wei H Y, Zhu Y, Qiu S, Han C, Hu L, Xu D, Zhou N B, Xing Z P, Hu Y J, Cui P Y, Dai Q G, Zhang H C. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J Integr Agric, 2018, 17: 2405-2417.
doi: 10.1016/S2095-3119(18)62025-8
[12] Proulx R A, Naeve S L. Pod removal, shade, and defoliation effects on soybean yield, protein, and oil. Agron J, 2009, 101: 971-978.
doi: 10.2134/agronj2008.0222x
[13] Zhang Y, Liu A Z. The correlation between soluble carbohydrate metabolism and lipid accumulation in castor seeds. Biotechnol Bull, 2016, 32: 120-129.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.06.017
[14] Han C J, Wang Q, Zhang H B, Wang S H, Song H D, Hao J M, Dong H Z. Light shading improves the yield and quality of seed in oil-seed peony (Paeonia ostii Feng Dan). J Integr Agric, 2018, 17: 1631-1640.
doi: 10.1016/S2095-3119(18)61979-3
[15] Lyu F J, Liu J R, Ma Y N, Chen J, Abudou K, Wang Y H, Chen B L, Meng Y L, Zhou Z G. Effect of shading on cotton yield and quality on different fruiting branches. Crop Sci, 2013, 53: 2670-2678.
doi: 10.2135/cropsci2013.03.0170
[16] Andrade F H, Ferreiro M A. Reproductive growth of maize, sunflower and soybean at different source levels during grain filling. Field Crops Res, 1996, 48: 155-165.
doi: 10.1016/S0378-4290(96)01017-9
[17] Gindaba J, Midgley S. Comparative effects of evaporative cooling, kaolin particle film, and shade net on sunburn and fruit quality in apples. HortScience, 2005, 40: 592-596.
doi: 10.21273/HORTSCI.40.3.592
[18] Slewinski T L, Braun D M. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci, 2010, 178: 341-349.
doi: 10.1016/j.plantsci.2010.01.010
[19] Han C J, Wang Q, Zhang H B, Dong H Z. Seed development and nutrient accumulation as affected by light shading in oilseed peony (Paeonia ostii Feng Dan). Sci Hortic, 2019, 251: 25-31.
doi: 10.1016/j.scienta.2019.02.084
[20] Ishibashi Y, Okamura K, Miyazaki M, Phan T, Yuasa T, Iwaya-Inouea M. Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality. Environ Exp Bot, 2014, 97: 49-54.
doi: 10.1016/j.envexpbot.2013.08.005
[21] Zhao D, Oosterhuis D. Cotton responses to shade at different growth stages: nonstructural carbohydrate composition. Crop Sci, 1998, 38: 1196-1203.
doi: 10.2135/cropsci1998.0011183X003800050014x
[22] Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Sci, 2001, 41: 1108-1108.
doi: 10.2135/cropsci2001.4141108x
[23] Samarajeewa D, Kojima N, Sakagami J, Chandanie W. The effect of different timing of top dressing of nitrogen application under low light intensity on the yield of rice (Oryza sativa L.). J Agron Crop Sci, 2005, 191: 99-105.
doi: 10.1111/jac.2005.191.issue-2
[24] Sims L, Pastor J, Lee T, Dewey B. Nitrogen, phosphorus and light effects on growth and allocation of biomass and nutrients in wild rice. Oecologia, 2012, 170: 65-76.
doi: 10.1007/s00442-012-2296-x pmid: 22407062
[25] Pan S G, Liu H D, Mo Z W, Patterson B, Duan M Y, Tian H, Hu S J, Tang X R. Effects of nitrogen and shading on root morphologies, nutrient accumulation, and photosynthetic parameters in different rice genotypes. Sci Rep, 2016, 6: 32148.
doi: 10.1038/srep32148 pmid: 27557779
[26] 姜丹, 陈雅君, 刘丹, 胡海辉. 光氮互作对草地早熟禾碳氮代谢的影响. 中国草地, 2005, 27(6): 49-53.
Jiang D, Chen Y J, Liu D, Hu H H. Effects of light condition and nitrogen supply on carbon-nitrogen metabolism of Poa pratensis L. Grassland China, 2005, 27(6): 49-53 (in Chinese with English abstract).
[27] 郭振清, 付陈陈, 李婧实, 张敏, 张玉春, 李清瑶, 郭双双, 蔡瑞国. 施氮对花后遮光条件下小麦产量与蛋白质含量的影响. 麦类作物学报, 2021, 7: 883-890.
Guo Z Q, Fu C C, Li J S, Zhang M, Zhang Y C, Li Q Y, Guo S S, Cai R G. Effect of different nitrogen rate on wheat yield and protein content under shading conditions after anthesis. J Triticeae Crop, 2021, 7: 883-890 (in Chinese with English abstract).
[28] 张永强, 方辉, 陈传信, 陈兴武, 赛力汗·赛, 薛丽华, 雷钧杰. 遮阴和种植密度对冬小麦灌浆特性及籽粒品质的影响. 中国农业大学学报, 2019, 24(5): 10-19.
Zhang Y Q, Fang H, Chen C X, Chen X W, Sailihan S, Xue L H, Lei J J. Effects of shading and planting population on grain-filling properties and grain quality of winter wheat. J China Agric Univ, 2019, 24(5): 10-19 (in Chinese with English abstract).
[29] 周培禄. 玉米不同杂交种密植群体冠层结构及其光、氮利用特征研究. 中国农业科学院硕士学位论文, 北京, 2016.
Zhou P L. Study on Canopy Structure Characteristics and Light, Nitrogen Utilization Traits of Maize under high Plant Density. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[30] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51: 4625-4632 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.004
[31] Fritschi F B, Ray J D. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica, 2007, 45: 92-98.
doi: 10.1007/s11099-007-0014-4
[32] Hendrix D L. Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Sci, 1993, 33: 1306-1311.
doi: 10.2135/cropsci1993.0011183X003300060037x
[33] Wang B, Ma M, Lu H, Meng Q, Li G, Yang X. Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. Photosynth Res, 2015, 126: 363-373.
doi: 10.1007/s11120-015-0126-9
[34] Hussain S, Mumtaz M, Manzoor S, Li S X, Ahmed I, Skalicky M, Brestic M, Rastogi A, Ulhassan Z, Shafiq I, Allakhverdiev S I, Khurshid H, Yang W, Liu W. Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiol Biochem, 2021, 159: 43-52.
doi: 10.1016/j.plaphy.2020.11.053
[35] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49.
doi: 10.1016/S0378-4290(00)00082-4
[36] Wagstaff C, Yang T J, Stead A D, Buchanan-Wollaston V, Roberts J A. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J, 2009, 57: 690-705.
doi: 10.1111/tpj.2009.57.issue-4
[37] Eastmond P, Koláčá L, Rawsthorne S. Photosynthesis by developing embryos of oilseed rape (Brassica napus L.). J Exp Bot, 1996, 47: 1763-1769.
doi: 10.1093/jxb/47.11.1763
[38] King S P, Badger M R, Furbank R T. CO2 refixation characteristics of developing canola seeds and silique wall. Aust J Plant Physiol, 1998, 25: 377-386.
[39] Li M, Naeem M S, Ali S, Zhang L, Liu L, Ma N, Zhang C. Root morphology, and seed yield of winter oilseed rape (Brassica napus L.) at varying plant densities. Biomed Res Int, 2017, 2017: 8581072.
[40] 邵玉娇. 不同光强下油菜品质形成的生理基础研究. 华中农业大学硕士学位论文, 湖北武汉, 2005.
Shao Y J. Studies on the Physiological Basis of Quality Formation of Rapeseed under Different Light Intensity. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2005 (in Chinese with English abstract).
[41] Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution. Eur J Agron, 2022, 137: 126520.
doi: 10.1016/j.eja.2022.126520
[42] Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Li J, Guan R, Zhang H, Wang G, Zuo J. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol, 2011, 56: 1577-1588.
[43] Ni F, Liu J H, Zhang J, Khan M N, Luo T, Xu Z H, Hu L Y. Effect of soluble sugar content in silique wall on seed oil accumulation during the seed-filling stage in Brassica napus. Crop Past Sci, 2019, 69: 1251-1263.
[44] Ekman A, Hayden D M, Dehesh K, Bülow L, Stymne S. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds. J Exp Bot, 2008. 59: 4247-4257.
doi: 10.1093/jxb/ern266 pmid: 19036843
[45] Chen M, Mooney B P, Hajduch M, Joshi T, Zhou M, Xu D, Thelen J J. System analysis of an Arabidopsis mutant altered in de novo fatty acid synthesis reveals diverse changes in seed composition and metabolism. Plant Physiol, 2009, 150: 27-41.
doi: 10.1104/pp.108.134882
[46] Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol, 2012, 53: 1380-1390.
[47] Bennett E J, Roberts J A, Wagstaff C. The role of the pod in seed development: strategies for manipulating yield. New Phytol, 2011, 190: 838-853.
doi: 10.1111/j.1469-8137.2011.03714.x pmid: 21507003
[48] Wardlaw I F. Tansley Review No. 27: the control of carbon partitioning in plants. New Phytol, 1990, 116: 341-381.
doi: 10.1111/j.1469-8137.1990.tb00524.x pmid: 33874094
[49] Fallahi H, Scofield G N, Badger M R, Chow W S, Furbank R T, Ruan Y L. Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development. J Exp Bot, 2008, 59: 3283-3295.
doi: 10.1093/jxb/ern180
[50] Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci, 1999, 4: 401-407.
doi: 10.1016/s1360-1385(99)01470-3 pmid: 10498964
[51] Bao X, Ohlrogge J. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiol, 1999, 120: 1057-1062.
pmid: 10444089
[52] Zhang S J, Liao X, Zhang C L, Xu H J. Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Ind Crops Prod, 2012, 40: 27-32.
doi: 10.1016/j.indcrop.2012.02.016
[53] 唐湘如, 官春云. 油菜栽培密度与几种酶活性及产量和品质的关系. 湖南农业大学学报(自然科学版), 2001, 27(4): 264-267.
Tang X R, Guan C Y. Effects of culture density on activities of several enzymes in rapeseed and its relationships with yield and quality. J Hunan Agric Univ, 2001, 27(4): 264-267 (in Chinese with English abstract).
[54] 黄秀芳, 孙敬东, 杨阿林, 范正辉, 孙旭明, 吴茂平, 陈俊才, 袁志章, 展旭东, 王书勤. 优质油菜史力丰生育特性及配套栽培技术研究. 中国油料作物学报, 2003, 25(1): 28-33.
Huang X F, Sun J D, Yang A L, Fan Z H, Sun X P, Wu M P, Chen J C, Yuan Z Z, Zhan X D, Wang S Q. Studies on growth and cultivated techniques of high-quality rapeseed Shilifeng. Chin J Oil Crop Sci, 2003, 25(1): 28-33 (in Chinese with English abstract).
[1] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[2] 郅晨阳, 薛晓梦, 吴洁, 李雄才, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 洪彦彬, 姜慧芳, 雷永, 廖伯寿. 花生籽仁蔗糖含量遗传模型分析[J]. 作物学报, 2024, 50(1): 32-41.
[3] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[4] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[5] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[6] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[7] 吴希, 王家瑞, 郝淼艺, 张宏军, 张仁和. 种植密度对不同生育期玉米品种光温资源利用率和产量的影响[J]. 作物学报, 2023, 49(4): 1065-1078.
[8] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876.
[9] 郭建斌, 成良强, 李威涛, 刘念, 罗怀勇, 丁膺宾, 喻博伦, 陈伟刚, 黄莉, 周小静, 雷永, 廖伯寿, 姜慧芳. 花生蔗糖含量与蛋白质和含油量的相关性分析及蔗糖含量QTL定位[J]. 作物学报, 2023, 49(10): 2698-2704.
[10] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[13] 徐华祥, 鲁庚, 郭曦, 李圆圆, 张涛. 紫苏溶血磷脂酰转移酶基因PfLPAAT的克隆及功能研究[J]. 作物学报, 2022, 48(10): 2494-2504.
[14] 杨恒山, 张雨珊, 葛选良, 李维敏, 郭子赫, 郭暖. 浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮素利用效率的影响[J]. 作物学报, 2022, 48(10): 2614-2624.
[15] 王利青, 于晓芳, 高聚林, 马达灵, 胡树平, 郭怀怀, 刘爱业. 不同年代玉米品种籽粒产量形成对种植密度的响应[J]. 作物学报, 2022, 48(10): 2625-2637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .