欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 771-778.doi: 10.3724/SP.J.1006.2024.33026

• 研究简报 • 上一篇    下一篇

玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例

梁星伟1(), 杨文亭1, 金雨1, 胡莉1, 傅小香1, 陈先敏2, 周顺利2,*(), 申思2,*(), 梁效贵1,2,*()   

  1. 1江西农业大学农学院 / 作物生理生态与遗传育种教育部重点实验室 / 植物化学与植物源农药创新团队, 江西南昌 330045
    2中国农业大学农学院, 北京 100193
  • 收稿日期:2023-04-27 接受日期:2023-10-23 出版日期:2024-03-12 网络出版日期:2023-11-14
  • 通讯作者: *周顺利, E-mail: zhoushl@cau.edu.cn; 申思, E-mail: shensi@cau.edu.cn; 梁效贵, E-mail: liangxg@jxau.edu.cn
  • 作者简介:E-mail: Liangxw1120@163.com
  • 基金资助:
    国家自然科学基金项目(32160445);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-13);中国博士后科学基金项目(2022M723432)

Is cob color variation in maize accidental or incidental to any agronomic traits? —An example of nationally approved common hybrids over the years

LIANG Xing-Wei1(), YANG Wen-Ting1, JIN Yu1, HU Li1, FU Xiao-Xiang1, CHEN Xian-Min2, ZHOU Shun-Li2,*(), SHEN Si2,*(), LIANG Xiao-Gui1,2,*()   

  1. 1School of Agricultural Sciences, Jiangxi Agricultural University / Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Laboratory for Phytochemistry and Plant-derived Pesticides of Jiangxi Province, Nanchang 330045, Jiangxi, China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2023-04-27 Accepted:2023-10-23 Published:2024-03-12 Published online:2023-11-14
  • Contact: *E-mail: zhoushl@cau.edu.cn; E-mail: shensi@cau.edu.cn; E-mail: liangxg@jxau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32160445);China Agriculture Research System of MOF and MARA(CARS-02-13);China Postdoctoral Science Foundation(2022M723432)

摘要:

玉米穗轴颜色在温带种质及商业化杂交品种中受到强烈的人工选择。为了明确我国不同区域玉米穗轴颜色选择的偏向性, 探索轴色与多种农艺性状间的关联, 本文以1992—2020年国审普通玉米品种为例, 对品种轴色、审定区域及多项农艺性状进行了比较分析。在统计到的1604个品种中, 红轴品种占比从1992年的50%逐渐提高至2020年的80%以上。其中, 北方春玉米区、黄淮海夏玉米区和西北玉米区的红轴品种比例随年份更替提升速度高于西南和南方玉米区。对比分析红、白轴品种在株型、果穗和籽粒特性等方面的差异发现, 近15~20年间的红轴品种平均穗长和穗行数均显著高于白轴。随年代更替, 红轴品种的籽粒平均粗淀粉含量升高趋势快于白轴, 但其平均粗脂肪含量下降明显, 并且红轴品种平均粗蛋白含量和赖氨酸含量表现弱于白轴。因此, 针对红色穗轴的强烈人工选择可能主要与玉米单株产量潜力的挖掘有关。但红轴品种在非生物逆境抗性和籽粒品质方面的表现需要进一步探讨。

关键词: 玉米, 穗轴颜色, 人工选择, 国审品种, 区域分布, 农艺性状

Abstract:

Maize cob color has undergone powerful artificial selection in temperate germplasm and commercial hybrids. To clarify the selection bias of cob color in maize in different regions, and to explore the association of cob color with various agronomic traits, we used the public data of nationally approved maize hybrids from 1992 to 2020 to analyze the released regions and multiple agronomic traits of hybrids with different cob colors (red or white). Among the 1604 hybrids counted, the proportion of red cob hybrids has gradually increased from 50% in 1992 to more than 80% in 2020. The proportion of red cobs in the Northern spring maize region, Huanghuaihai summer maize region, and Northwestern maize region increased faster than that in the Southwestern and Southern maize regions. The average ear length and kernel row number of the red cob hybrids and white axis varieties were significantly higher than those of the whites in the recent 15-20 years. The average crude starch content of the reds increased significantly over the years, while the average crude fat content decreased significantly. The average crude protein and lysine content of the reds were weaker than that of the white axis varieties. Therefore, we speculate that the strong artificial selection for red cob may be mainly related to the pursuit of maize yield potential per plant. However, the performance of red cob hybrids in abiotic stress and grain protein quality deserves further exploration.

Key words: maize, cob color, artificial selection, nationally approved hybrids, regional distribution, agronomic traits

图1

历年国审普通玉米品种穗轴颜色比率变化趋势 White: 白轴; Red: 红轴。图中阴影部分为统计到的不同时段国审普通玉米品种数量。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著。"

图2

不同区域历年国审普通玉米品种穗轴颜色变化特征 N: 北方玉米区; HHH: 黄淮海玉米区; NW: 西北玉米区; SW: 西南玉米区; S: 南方玉米区; _W: 白色穗轴; _R: 红色穗轴。图中数字代表统计到的不同时段内不同区域国审玉米品种数量。"

图3

不同穗轴颜色历年国审普通玉米品种株型比例变化 W: 白色穗轴; R: 红色穗轴。"

图4

不同穗轴颜色历年国审普通玉米品种植株农艺性状比较 *和***分别表示在0.05和0.001概率水平差异显著。"

图5

不同穗轴颜色历年国审普通玉米品种果穗/籽粒形态比较 *、**和***分别表示在0.05、0.01和0.001概率水平差异显著。"

图6

不同穗轴颜色历年国审玉米品种籽粒品质比较 White: 白轴; Red: 红轴; White_average: 白轴平均值; Red_average: 红轴平均值; White_in total: 白轴玉米总数; Red_in total: 红轴玉米总数。图中红、黑三角形分别代表红、白轴平均值。*和***分别表示在0.05和0.001概率水平差异显著。"

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.001
[2] Huang C, Sun H Y, Xu D Y, Chen Q Y, Liang Y M, Wang X F, Xu G H, Tian J G, Wang C L, Li D. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA, 2018, 115: 334-341.
[3] Leng P, Khan S U, Zhang D, Zhou G, Zhang X, Zheng Y, Wang T, Zhao J. Linkage mapping reveals QTL for flowering time-related traits under multiple abiotic stress conditions in maize. Int J Mol Sci, 2022, 23: 8410.
doi: 10.3390/ijms23158410
[4] Shen S, Zhang L, Liang X G, Zhao X, Lin S, Qu L H, Liu Y P, Gao Z, Ruan Y L, Zhou S L. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. J Exp Bot, 2018, 69: 1599-1613.
doi: 10.1093/jxb/ery013 pmid: 29365129
[5] Wang T Y, Ma X L, Li Y, Bai D P, Liu C, Liu Z Z, Tan X J, Shi Y S, Song Y C, Carlone M. Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Sci, 2011, 51: 512-525.
doi: 10.2135/cropsci2010.06.0383
[6] Wills D M, Fang Z, York A M, Holland J B, Doebley J F. Defining the role of the MADS-box gene, zea agamous-like1, a target of selection during maize domestication. J Hered, 2018, 109: 333-338.
doi: 10.1093/jhered/esx073
[7] Chen X M, Li F Y, Dong S, Liu X F, Li B B, Xiao Z D, Deng T, Wang Y B, Shen S, Zhou S L. Stubby or slender? Ear architecture is related to drought resistance in maize. Front Plant Sci, 2022, 13: 901186.
doi: 10.3389/fpls.2022.901186
[8] Fang H, Fu X Y, Wang Y B, Xu J, Feng H Y, Li W Y, Xu J T, Jittham O, Zhang X, Zhang L L. Genetic basis of kernel nutritional traits during maize domestication and improvement. Plant J, 2020, 101: 278-292.
doi: 10.1111/tpj.14539
[9] Sosso D, Luo D P, Li Q B, Sasse J, Yang J L, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422 pmid: 26523777
[10] Morohashi K, Casas M I, Falcone Ferreyra M L, Mejía-Guerra M K, Pourcel L, Yilmaz A, Feller A, Carvalho B, Emiliani J, Rodriguez E, Pellegrinet S, Mcmullen M, Casati P, Grotewold E. A genome-wide regulatory framework identifies maize pericarp color1 controlled genes. Plant Cell, 2012, 24: 2745-2764.
doi: 10.1105/tpc.112.098004
[11] Xie C X, Weng J F, Liu W G, Zou C, Hao Z F, Li W W, Li M S, Guo X S, Zhang G Y, Xu Y B. Zea mays (L.) P1 locus for cob glume color identified as a post-domestication selection target with an effect on temperate maize genomes. Crop J, 2013, 1: 15-24.
doi: 10.1016/j.cj.2013.07.002
[12] Frascaroli E, Landi P. Allelic frequency change of P1 gene in maize population after recurrent selection for grain yield. Crop Sci, 1998, 38: 1391-1394.
doi: 10.2135/cropsci1998.0011183X003800050039x
[13] Landi P, Frascaroli E. Association between P1 gene and agronomic traits in maize backcross-derived lines differing for cob color. Maydica, 2004, 49: 127-135.
[14] Landi P, Canè M A, Frascaroli E. Responses to divergent selection for cob color in maize. Euphytica, 2008, 164: 645-658.
doi: 10.1007/s10681-008-9659-8
[15] Venturini G, Babazadeh L, Casati P, Pilu R, Salomoni D, Toffolatti S L. Assessing pigmented pericarp of maize kernels as possible source of resistance to fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. Int J Food Microbiol, 2016, 227: 56-62.
doi: 10.1016/j.ijfoodmicro.2016.03.022 pmid: 27071055
[16] Pilu R, Cassani E, Sirizzotti A, Petroni K, Tonelli C. Effect of flavonoid pigments on the accumulation of fumonisin B1 in the maize kernel. J Appl Genet, 2011, 52: 145-152.
doi: 10.1007/s13353-010-0014-0 pmid: 21116770
[17] Wang X Y, Wang X L, Xu C C, Tan W M, Wang P, Meng Q F. Decreased kernel moisture in medium-maturing maize hybrids with high yield for mechanized grain harvest. Crop Sci, 2019, 59: 2794-2805.
doi: 10.2135/cropsci2019.04.0218
[18] Liang X G, Gao Z, Shen S, Zhao X, Zhang L, Zhou S L. Cob color, an indicator of grain dehydration and agronomic traits in maize hybrids. Crop J, 2022, 10: 582-586.
doi: 10.1016/j.cj.2021.11.003
[19] Warburton M L, Reif J C, Frisch M, Bohn M, Bedoya C, Xia X C, Crossa J, Franco J, Hoisington D, Pixley K. Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci, 2008, 48: 617-624.
doi: 10.2135/cropsci2007.02.0103
[20] 陈先敏, 梁效贵, 赵雪, 高震, 吴巩, 申思, 林珊, 周丽丽, 周顺利. 历年国审玉米品种产量和品质性状变化趋势分析. 中国农业科学, 2018, 51: 4020-4029.
doi: 10.3864/j.issn.0578-1752.2018.21.002
Chen X M, Liang X G, Zhao X, Gao Z, Wu G, Shen S, Lin S, Zhou L L, Zhou S L. Analysis on the trends of yield and quality related traits for maize hybrids released in China over the past years. Sci Agric Sin, 2018, 51: 4020-4029 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.21.002
[21] 孙世贤. 中国农作物优良品种: 1990-2000年国家审(认)定品种. 北京: 中国农业科学技术出版社, 2001. pp 145-206.
Sun S X. China’s Crop Hybrids:National Accredited and Recognitory Hybrids During 1990-2000. Beijing: China Agricultural Science and Technology Press, 2001. pp 145-206 (in Chinese).
[22] 孙世贤, 廖琴. 全国玉米审定品种名录(2000-2008). 北京: 中国农业科学技术出版社, 2008. pp 1-251.
Sun S X, Liao Q. The Catalogue of Accredited Maize Hybrids in China (2000-2008). Beijing: China Agricultural Science and Technology Press, 2008. pp 1-251 (in Chinese).
[23] 陈传永, 侯玉虹, 孙锐, 朱平, 董志强, 赵明. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36: 1153-1160.
doi: 10.3724/SP.J.1006.2010.01153
Chen C Y, Hou Y H, Sun R, Zhu P, Dong Z Q, Zhao M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agron Sin, 2010, 36: 1153-1160 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.01153
[24] 白志英, 李存东, 郑金风, 毕常锐, 唐光雷. 种植密度对玉米先玉335和郑单958生理特性、产量的影响. 华北农学报, 2010, 25(增刊1): 166-169.
Bai Z Y, Li C D, Zheng J F, Bi C R, Tang L G. The effect of plant density on the physiological characters and yield of maize Xianyu 335 and Zhengdan 958. Acta Agric Boreali-Sin, 2010, 25(S1): 166-169 (in Chinese with English abstract).
[25] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50: 2463-2475.
doi: 10.3864/j.issn.0578-1752.2017.13.006
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017, 50: 2463-2475 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.13.006
[26] 张丽, 董树亭, 刘存辉, 王空军, 张吉旺, 刘鹏. 玉米籽粒容重与产量和品质的相关分析. 中国农业科学, 2007, 40: 405-411.
Zhang L, Dong S T, Liu C H, Wang K J, Zhang J W, Liu P. Correlation analysis on maize test weight, yield and quality. Sci Agric Sin, 2007, 40: 405-411 (in Chinese with English abstract).
[27] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573-581.
doi: 10.1016/j.tplants.2010.06.005
[28] Du H, Feng B R, Yang S S, Huang Y B, Tang Y X. The R2R3-MYB transcription factor gene family in maize. PLoS One, 2012, 7: e37463.
doi: 10.1371/journal.pone.0037463
[29] Karppinen K, Lafferty D J, Albert N W, Mikkola N, McGhie T, Allan A C, Afzal B M, Häggman H, Espley R V, Jaakola L. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. New Phytol, 2021, 232: 1350-1367.
doi: 10.1111/nph.17669 pmid: 34351627
[1] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[2] 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856.
[3] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[4] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[5] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[6] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[7] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[8] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[9] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[10] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[11] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[12] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[13] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[14] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[15] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .