欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1136-1146.doi: 10.3724/SP.J.1006.2024.34152

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

转录组结合区域关联分析挖掘油菜含油量积累的候选基因

曹松(), 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文*(), 熊兴华*()   

  1. 湖南农业大学农学院, 湖南长沙 410128
  • 收稿日期:2023-09-08 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-01-25
  • 通讯作者: 熊兴华, E-mail: xiongene@hunau.edu.cn; 钱论文, E-mail: qianlunwen@163.com
  • 作者简介:E-mail: c18890046232@163.com
  • 基金资助:
    湖南省杰出青年科学基金项目(2022JJ10027);湖南省教育厅科学研究重点项目(21A0135);国家科技重大专项项目(2022ZD04009)

A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus

CAO Song(), YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen*(), XIONG Xing-Hua*()   

  1. College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2023-09-08 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-01-25
  • Contact: E-mail: xiongene@hunau.edu.cn; E-mail: qianlunwen@163.com
  • Supported by:
    Science Foundation for Distinguished Youth Scholars of Hunan Province, China(2022JJ10027);Research Foundation of Education Bureau of Hunan Province, China(21A0135);National Key Science and Technology Project(2022ZD04009)

摘要:

油菜(Brassica napus L.)是中国食用植物油的主要来源, 提高种子含油量是增加菜籽油供应最为有效的方法。本研究利用4个油菜自交系授粉后25 d、35 d、45 d的种子转录组数据分析, 筛选出43个与油脂合成相关基因, 其中33个基因持续上调表达, 10个基因持续下调表达, 主要基因包括BnLEC1BnABI5BnOLEO4BnOBAP1a等。同时, 结合50份半冬性甘蓝型油菜重测序数据, 检测到与含油量显著相关3个SNP、9个SNP分别定位到BnOBAP1a-A10和BnABI5-A05, 其中BnOBAP1a-A10_Hap1对应材料含油量显著高于Hap2, BnABI5-A05_Hap1对应材料含油量显著高于Hap3。此外, 利用WGCNA构建基因共表达网络发现, BnOBAP1aBnABI5通过3个转录因子LEC1、HMGB3、HTA11间接相连, 形成了潜在调控的分子网络, 影响种子油脂积累。这些结果有利于我们开发单体型功能标记进一步提高油菜籽含油量。

关键词: 甘蓝型油菜, 含油量, 转录组分析, 共表达分析, 区域关联分析

Abstract:

Rapeseed (Brassica napus L.) is the main source of edible vegetable oil in China, and increasing seed oil content is the most effective way to increase the supply of rapeseed oil. In this study, 43 genes related to lipid synthesis were selected by analyzing the seed transcriptome data of 4 rapeseed inbred lines 25, 35, and 45 days after pollination. Among them, 33 genes were continuously up-expressed and 10 genes were continuously down-expressed from 25 to 45 days of seed development. The main genes included BnLEC1, BnABI5, BnOLEO4, and BnOBAP1a. At the same time, combined with the resequencing data of 50 semi-winter Brassica napus, 3 SNPs and 9 SNPs significantly related to oil content were detected to BnOBAP1a-A10 and BnABI5-A05, respectively, and the oil content of BnOBAP1A-A10_Hap1 was significantly higher than Hap2. The oil content of BnABI5-A05_Hap1 was significantly higher than Hap3. In addition, WGCNA was used to construct gene networks, and we found that BnOBAP1a and BnABI5 were indirectly connected through three transcription factors LEC1, HMGB3, and HTA11, which together formed a molecular network involved in the potential regulation of seed oil accumulation. The results of this study provide valuable insights for the development of haplotype functional markers, aiming to further enhance oil content in B. napus.

Key words: Brassica napus, oil content, transcriptome analysis, coexpression analysis, regional association analysis

表1

长沙地区4个油菜品种成熟种子含油量统计表"

品种
Variety
最小值
Min.
最大值
Max.
平均值±标准差
Mean±SD
变异系数
CV (%)
XY777 31.60 36.06 33.32±1.67 5.02
XY015 38.83 42.56 40.39±1.28 3.16
CS136 47.51 51.52 49.50±1.30 2.62
CS115 46.24 50.18 48.84±1.21 2.32

图1

持续上调或下调表达基因筛选统计 (a) 长沙地区4个油菜品种, 25~35 d、35~45 d持续上调或下调基因数量统计图。(b) 4个品种持续上调基因维恩图。(c) 4个品种持续下调基因维恩图。"

图2

383个差异基因通路富集分析 圆圈大小表示基因数量, 热图表示-log10(P-value)的值。"

图3

热图显示与含油量相关差异表达基因的表达量(DEGs) RNA-seq数据的表达值进行了log10(fpkm+1)转换, 并显示为填充块, 从蓝色到黄色, 再到红色。"

图4

50个重测序材料中单体型(1,944,128~1,994,025 bp)区域含油量关联分析 (a) 单体型(1,944,128~1,994,025 bp; R2=0.99)区域的含油量关联分析。蓝色实线表示全基因组显著性的阈值P值为1.0×10-4。(b)和(c) 3个SNP (Chr.A10: 1,969,139; Chr.A10: 1,969,444; Chr.A10: 1,969,452, P=1.35×10-5)与含油量显著相关, 并定位在BnOBAP1a-A10基因启动子区域。热图显示这些SNPs存在强的连锁不平衡。在BnOBAP1a-A10单倍型区检测到2个单倍型等位基因。(d) 比较分析2个单体型等位基因对应材料的含油量。单体型等位基因在群体中的频率大于0.01将被用于此分析。箱型图显示BnOBAP1a-A10_Hap1等位基因对应的材料含油量显著高于BnOBAP1a-A10_Hap2对应的材料含油量。*、**、***分别表示在0.05、0.01和0.001概率水平差异显著。"

图5

50个重测序材料中单体型(4,389,567~4,439,432 bp)区域的含油量关联分析 (a) 单体型(4,389,567~4,439,432 bp; R2=0.99)区域的含油量关联分析。蓝色实线表示全基因组显著性的阈值P值为1.0×10-4。(b)和(c) 9个SNP (A05: 4414567; P =1.42×10-4)与含油量显著相关, 并定位在BnABI5-A05基因区域。热图显示这些SNPs存在强的连锁不平衡。在BnABI5-A05单倍型区检测到3个单倍型等位基因。(d) 比较分析3个单体型等位基因对应材料的含油量。单体型等位基因在群体中的频率大于0.01将被用于此分析。箱型图显示BnABI5-A05_Hap1等位基因对应的材料有较高的含油量。*、**、***分别表示在0.05、0.01和0.001水平差异显著。"

图6

共表达网络分析 (a) 模块系统树图。(b) 模块与含油量相关性。(c) 模块中基因数目对比。(d) 基因网络图。八边形红色节点代表候选基因, 根据功能标注, 共表达网络分为油脂生物合成过程(红色节点)、油脂转运(紫色节点)、油脂氧化(橙色节点)、光合作用(绿色节点)和碳水化合物代谢过程(灰色节点)。"

[1] Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet, 2016, 129: 3-15.
[2] Hua W, Liu J, Wang H. Molecular regulation and genetic improvement of seed oil content in Brassica napus L. Front Agric Sci Eng, 2016, 3: 186-194.
[3] 王汉中. 未来15年中国油菜遗传改良策略. 中国油料作物学报, 2004, 26: 98-101.
Wang H Z. Strategy for rapeseed genetic improvement in China in the coming fifteen years. Chin J Oil Crop Sci, 2004, 26: 98-101 (in Chinese with English abstract).
[4] Xin F W, Gui H L, Qing Y, Wei H, Jing L, Wang H Z. Genetic analysis on oil content in rapeseed (Brassica napus L.). Euphytica, 2010, 173: 17-24.
doi: 10.1007/s10681-009-0062-x
[5] Hua W, Li R J, Zhan G M, Liu J, Li J, Wang X F, Liu G H, Wang H Z. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J, 2012, 69: 32-44.
[6] Yan L G, Ping S, Nan W, Jing W, Bin Y, Chao Z M, Jin X T, Ji T Z, Ting D F, Jin X S. Genetic effects and genotype × environment interactions govern seed oil content in Brassica napus L. BMC Genet, 2017, 18: 1.
doi: 10.1186/s12863-016-0468-0
[7] Jing L, Wei H, Hong L Y, Gao M Z, Rong J L, Lin B D, Xin F W, Gui H L, Wang H Z. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot, 2012, 63: 3727-3740.
doi: 10.1093/jxb/ers066 pmid: 22442419
[8] Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep, 2017, 7: 46295.
doi: 10.1038/srep46295
[9] Shi J, Lang C, Wang F, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. Plant Sci, 2017, 263: 177-182.
doi: 10.1016/j.plantsci.2017.07.014
[10] Frentzen M. Acyltransferases from basic science to modified seed oils. Eur J Lipid Sci Technol, 2010, 100: 161-166.
[11] Hills M J. Control of storage-product synthesis in seeds. Curr Opin Plant Biol, 2004, 7: 302-308.
doi: 10.1016/j.pbi.2004.03.003 pmid: 15134751
[12] Bates P D, Johnson S R, Cao X, Li J, Nam J W, Jaworski J G, Ohlrogge J B, Browse J. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly. Proc Natl Acad Sci USA, 2014, 111: 4-9.
[13] Turnham E, Northcote D H. Changes in the activity of acetyl-CoA carboxylase during rape-seed formation. Biochem J, 1983, 212: 3-9.
[14] Weselake R J, Shah S, Tang M, Quant P A, Snyder C L, Furukawa-Stoffer T L, Zhu W, Taylor D C, Zou J, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney M M, Harwood J L. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot, 2008, 59: 3-9.
[15] Lock Y Y, Snyder C L, Zhu W, Siloto R M, Weselake R J, Shah S. Antisense suppression of type 1 diacylglycerol acyltransferase adversely affects plant development in Brassica napus. Physiol Plant, 2009, 137: 61-71.
doi: 10.1111/ppl.2009.137.issue-1
[16] Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol, 2005, 46: 399-406.
doi: 10.1093/pcp/pci048
[17] Wang H, Guo J, Lambert K N, Lin Y. Developmental control of Arabidopsis seed oil biosynthesis. Planta, 2007, 226: 73-83.
doi: 10.1007/s00425-006-0469-8
[18] Wu X L, Liu Z H, Hu Z H, Huang R Z. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol, 2014, 56: 82-93.
[19] Elahi N, Duncan R W, Stasolla C. Decreased seed oil production in FUSCA3 Brassica napus mutant plants. Plant Physiol Biochem, 2015, 96: 22-30.
[20] Elahi N, Duncan R W, Stasolla C. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Plant Physiol Biochem, 2016, 100: 52-63.
doi: 10.1016/j.plaphy.2015.12.022
[21] Wang Z, Qiao Y, Zhang J, Shi W, Zhang J. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing. Gene, 2017, 619: 61-70.
doi: 10.1016/j.gene.2017.03.040
[22] Xu H M, Kong X D, Chen F, Huang J X, Lou X Y, Zhao J Y. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. BMC Genomics, 2015, 16: 858.
doi: 10.1186/s12864-015-2062-7
[23] Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Große I, Schiessl S, Jung C, Emrani N. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Plant Cell Environ, 2018, 41: 1935-1947.
doi: 10.1111/pce.v41.8
[24] Zhao C, Xie M, Liang L, Yang L, Han H, Qin X, Zhao J, Hou Y, Dai W, Du C, Xiang Y, Liu S, Huang X. Genome-wide association analysis combined with quantitative trait loci mapping and dynamic transcriptome unveil the genetic control of seed oil content in Brassica napus L. Front Plant Sci, 2022, 13: 929197.
doi: 10.3389/fpls.2022.929197
[25] He Y, Wu D, Wei D, Fu Y, Cui Y, Dong H, Tan C, Qian W. GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Sci Rep, 2017, 7: 15971.
doi: 10.1038/s41598-017-15976-4
[26] Gajardo H, Wittkop B, Soto-Cerda B, Higgins E, Parkin I, Snowdon R, Federico M, Iniguez-Luy F. Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol Breed, 2015, 35: 143.
doi: 10.1007/s11032-015-0340-3
[27] Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet, 2016, 129: 3-15.
[28] Xiao Z, Zhang C, Tang F, Yang B, Zhang L, Liu J, Huo Q, Wang S, Li S, Wei L, Du H, Qu C, Lu K, Li J, Li N. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop Brassica napus. Biotechnol Biofuels, 2019, 12: 216.
doi: 10.1186/s13068-019-1557-x
[29] Cun M Q, Le D J, Fu Y F, Hui Y Z, Kun L, Li J W, Xin F X, Ying L, Shi M L, Rui W, Jia N L. Genome-wide association mapping and identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics, 2017, 18: 232.
doi: 10.1186/s12864-017-3607-8
[30] Zhao C, Xie M, Liang L, Yang L, Han H, Qin X, Zhao J, Hou Y, Dai W, Du C, Xiang Y, Liu S, Huang X. Genome-wide association analysis combined with quantitative trait loci mapping and dynamic transcriptome unveil the genetic control of seed oil content in Brassica napus L. Front Plant Sci, 2022, 13: 929197.
doi: 10.3389/fpls.2022.929197
[31] Uzunova M, Ecke W, Weissleder K, Röbbelen G. Mapping the genome of rapeseed (Brassica napus L.): I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet, 1995, 90: 194-204.
doi: 10.1007/BF00222202 pmid: 24173891
[32] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[33] Browning B L, Browning S R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet, 2009, 84: 10-23.
[34] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 3-5.
[35] Lu K, Peng L, Zhang C, Lu J, Yang B, Xiao Z, Liang Y, Xu X, Qu C, Zhang K, Liu L, Zhu Q, Fu M, Yuan X, Li J. Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front Plant Sci, 2017, 8: 206.
[36] Turner S D. QQman: an R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv, 2014, 005165.
[37] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559
[38] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 498-504.
[39] Si P, Mailer R J, Galwey N, Turner D W. Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aust J Agric Res, 2003, 54: 397-407.
doi: 10.1071/AR01203
[40] Tang S, Zhao H, Lu S, Yu L, Zhang G, Zhang Y, Yang Q Y, Zhou Y, Wang X, Ma W, Xie W, Guo L. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol Plant, 2021, 14: 470-487.
doi: 10.1016/j.molp.2020.12.003
[41] Tang M Q, Zhang Y Y, Liu Y Y, Tong C B, Cheng X H, Zhu W, Li Z Y, Huang J Y, Liu S Y. Mapping loci controlling fatty acid profiles and oil and protein content by genome-wide association study in Brassica napus. Crop J, 2019, 7: 217-226.
doi: 10.1016/j.cj.2018.10.007
[42] Zhao C, Xie M, Liang L, Yang L, Han H, Qin X, Zhao J, Hou Y, Dai W, Du C, Xiang Y, Liu S, Huang X. Genome-wide association analysis combined with quantitative trait loci mapping and dynamic transcriptome unveil the genetic control of seed oil content in Brassica napus L. Front Plant Sci, 2022, 13: 929197.
doi: 10.3389/fpls.2022.929197
[43] López-Ribera I, La Paz J L, Repiso C, García N, Miquel M, Hernández M L, Martínez-Rivas J M, Vicient C M. The evolutionary conserved oil body associated protein OBAP1 participates in the regulation of oil body size. Plant Physiol, 2014, 164: 37-49.
[44] Kong Y, Chen S, Yang Y, An C. ABA-insensitive (ABI) 4 and ABI5 synergistically regulate DGAT1 expression in Arabidopsis seedlings under stress. FEBS Lett, 2013, 587: 76-82.
[45] Yeap W, Lee F L, Shan D, Musa H, Appleton D R, Kulaveerasingam H. WRI1-1, ABI5, NF-YA3 and NF-YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm. Plant J, 2017, 91: 97-113.
doi: 10.1111/tpj.2017.91.issue-1
[46] Crowe A J, Abenes M, Plant A, Moloney M M. The seed-specific transactivator, ABI3, induces oleosin gene expression. Plant Sci, 2000, 151: 171-181.
doi: 10.1016/s0168-9452(99)00214-9 pmid: 10808073
[47] Nakamura S, Lynch T J, Finkelstein R R. Physical interactions between ABA response loci of Arabidopsis. Plant J, 2001, 26: 27-35.
[1] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[2] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[3] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[4] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
[5] 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究[J]. 作物学报, 2024, 50(4): 969-980.
[6] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[7] 聂晓玉, 李真, 王天尧, 周元委, 徐正华, 王晶, 汪波, 蒯婕, 周广生. 种植密度对角果期弱光胁迫油菜籽粒油脂积累的影响[J]. 作物学报, 2024, 50(2): 493-505.
[8] 郅晨阳, 薛晓梦, 吴洁, 李雄才, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 洪彦彬, 姜慧芳, 雷永, 廖伯寿. 花生籽仁蔗糖含量遗传模型分析[J]. 作物学报, 2024, 50(1): 32-41.
[9] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[10] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[11] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[12] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[13] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[14] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[15] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .