欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2570-2580.doi: 10.3724/SP.J.1006.2025.54038

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花减数分裂进程鉴定体系构建及其对高温胁迫的响应分析

李亚玮(), 徐盈盈, 左春阳, 刘若男, 梁亚军, 孔杰, 张献龙, 闵玲()   

  1. 华中农业大学作物遗传改良全国重点实验室 / 湖北洪山实验室, 湖北武汉 430070
  • 收稿日期:2025-03-20 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-15
  • 通讯作者: *闵玲, E-mail: lingmin@mail.hzau.edu.cn
  • 作者简介:李亚玮, E-mail: liyawei@webmail.hzau.edu.cn
    **同等贡献
  • 基金资助:
    新疆维吾尔自治区2023年“揭榜挂帅”棉花品种重大农艺性状解析与分子设计育种项目(2023A01-3);新疆人才发展基金“优质耐高温棉花关键基因发掘与育种应用”项目(202403-03);湖北省杰出青年基金-棉花响应高温胁迫遗传机制解析及育种应用项目(2024AFA059)

Construction of a meiotic progression identification system in cotton and analysis of its response to high-temperature stress

LI Ya-Wei(), XU Ying-Ying, ZUO Chun-Yang, LIU Ruo-Nan, LIANG Ya-Jun, KONG Jie, ZHANG Xian-Long, MIN Ling()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2025-03-20 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-15
  • Contact: *E-mail: lingmin@mail.hzau.edu.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    “Unveiling and Commanding” Major Agronomic Traits and Molecular Design Breeding in Cotton Varieties of Xinjiang Uyghur Autonomous Region(2023A01-3);Projects Sponsored by the Development Fund for Xinjiang Talents “Exploration and Breeding Application of Key Genes for High-Quality, Heat-Resistant Cotton”(202403-03);Hubei Provincial Outstanding Youth Fund-Genetic Mechanism Analysis and Breeding Application of Cotton in Response to High Temperature Stress(2024AFA059)

摘要:

高温胁迫加剧是导致棉花减数分裂异常及产量下降的核心问题, 本研究以棉花遗传转化受体材料‘Jin 668'为研究对象, 通过对花蕾盐酸酸解、酶解和乙酸酸解体系的摸索, 系统构建棉花减数分裂进程鉴定技术体系, 并对其响应高温胁迫进行分析。通过观察不同长度花蕾的小孢子母细胞和染色体形态, 确定棉花减数分裂进程与花蕾长度的关系, 并详细描述了减数分裂前期I、中期I、后期I、末期I、中期II、后期II和末期II各个时期的细胞和染色体特征。研究发现, 高温胁迫会对棉花减数分裂前期I的各个阶段产生显著影响, 导致染色体凝集异常、配对失败、交叉互换受阻等, 最终导致小孢子形成受阻或发育异常。本研究建立的棉花减数分裂鉴定技术体系, 有效降低了制片过程中杂质的干扰, 为深入研究棉花减数分裂进程及高温胁迫响应机制提供了重要的技术支持, 为棉花耐高温育种和遗传改良提供了新的思路和方法。

关键词: 棉花, 高温胁迫, 减数分裂, 染色体行为, 制片技术

Abstract:

High-temperature stress has become a critical factor disrupting cotton meiosis and reducing yield. In this study, using the cotton transformation receptor material ‘Jin 668', we systematically established a reliable method for identifying meiotic progression in cotton by optimizing protocols for hydrochloric acid hydrolysis, enzymatic digestion, and acetic acid maceration of cotton flower buds. This optimized system effectively minimized interference from impurities during slide preparation. By examining the morphology of microspore mother cells and chromosomes in buds of varying lengths, we clarified the relationship between bud length and meiotic stage, and characterized cellular and chromosomal features across key stages, including prophase I, metaphase I, anaphase I, telophase I, metaphase II, anaphase II, and telophase II. Our results indicate that high-temperature stress significantly affects the early stages of prophase I, leading to abnormal chromosome condensation, failure of homologous pairing, disrupted crossover recombination, and ultimately defective microspore development. The identification system we developed provides a robust technical foundation for further investigation into cotton meiosis and its response to high-temperature stress, offering valuable strategies for breeding heat-tolerant cotton varieties and facilitating genetic improvement efforts.

Key words: cotton, high-temperature stress, meiosis, chromosome behavior, slide preparation technique

图1

陆地棉‘Jin 668'花药发育时期和花蕾长度对应关系图示 A~J分别表示不同长度花蕾对应的半薄切片图片。半薄切片中图注如下, E: 表皮层; Ar: 孢原细胞; 1°P: 初生周缘细胞; 2°P: 次生周缘细胞; 1°Sp: 初生造孢细胞; Sp: 造孢细胞; En: 药室内壁; ML: 中间层; T: 绒毡层; MMC; 花粉母细胞; Msp: 小孢子。纵向标尺=0.5 cm; 横向标尺=50 μm。"

图2

棉花花药减数分裂时期的最佳盐酸酸解时间摸索 A~D为减数分裂间期(A), 减数分裂前期I (B), 减数分裂末期I (C), 四分体时期(D)的花药被1 mol L-1盐酸酸解5 min后的小孢子母细胞镜检图。E~K为四分体时期样品被1 mol L-1盐酸处理的酸解时间摸索体系。标尺=50 μm。"

图3

棉花花蕾长度和性母细胞形态对应关系分析 A: 有丝分裂; B: 减数分裂间期; C: 减数分裂前期I-细线期; D: 减数分裂前期I-偶线期; E: 减数分裂前期I-粗线期; F: 减数分裂前期I-终变期; G: 减数分裂中期I; H: 减数分裂后期I; I: 减数分裂末期I; J: 减数分裂中期II; K: 减数分裂后期II; L: 四分体时期。标尺= 50 μm。"

图4

棉花最适酶解时间摸索 A~E为酶解不同时间后酶解液中的样品情况, 标尺=1.5 cm; F~J为酶解不同时间后样品经100 μL 0.01 mol L-1柠檬酸钠缓冲液(pH 4.5)清洗后的状态, 标尺=1.5 cm; K~O为显微镜下观察到经酶解和0.01 mol L-1柠檬酸钠缓冲液冲洗后的单个花药状态, 标尺=1000 μm; P~T为酶解不同时间花药里的染色体状态, 标尺=20 μm。"

图5

棉花花药减数分裂时期染色体观察最适乙酸酸解体系摸索 A~F展示了棉花花药在不同乙酸浓度下处理3 min后染色体被杂质覆盖的情况。G~J展示了棉花花药在70%乙酸处理不同时间后染色体被杂质覆盖的情况。70%乙酸分别处理3 min (G)、5 min (H)、7 min (I)、10 min (J)、12 min (K)和15 min (L)。标尺=20 μm。"

图6

棉花花药减数分裂全时期染色体进程观察 A: 减数分裂间期; B: 减数分裂前期I-细线期; C: 减数分裂前期I-偶线期; D: 减数分裂前期I-粗线期; E: 减数分裂前期I-双线期; F: 减数分裂前期I-终变期; G: 减数分裂中期I; H: 减数分裂后期I; I: 减数分裂末期I; J: 减数分裂中期II; K: 减数分裂后期II; L: 四分体时期。标尺为右下角图像标尺, 右上角为放大图。标尺=20 μm。"

图7

常温与高温下棉花减数分裂小孢子母细胞观察 A为常温条件下, 减数分裂I时期小孢子母细胞的形态特征; B~D为高温条件下, 减数分裂I时期小孢子母细胞的形态特征; E为常温条件下, 四分体时期小孢子母细胞的形态特征; F~H为高温条件下, 四分体时期小孢子母细胞的形态特征。NT: 常温; HT: 高温。标尺=50 μm。"

图8

常温与高温下棉花减数分裂各阶段染色体形态变化观察 A和G分别表示常温和高温条件下, 减数分裂间期的行为特征; B和H分别表示常温和高温条件下, 减数分裂前期I-细线期的行为特征; C和I分别表示常温和高温条件下, 减数分裂前期I-偶线期的行为特征; D和J分别表示常温和高温条件下, 减数分裂前期I-粗线期的行为特征; E和K分别表示常温和高温条件下, 减数分裂前期I-双线期的行为特征; F和L分别表示常温和高温条件下, 四分体时期的行为特征。NT: 常温; HT: 高温。标尺=20 μm。"

[1] Heino M, Kinnunen P, Anderson W, Ray D K, Puma M J, Varis O, Siebert S, Kummu M. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Sci Rep, 2023, 13: 3583.
doi: 10.1038/s41598-023-29378-2 pmid: 36869041
[2] De Storme N, Copenhaver G P, Geelen D. Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol, 2012, 160: 1808-1826.
doi: 10.1104/pp.112.208611 pmid: 23096158
[3] Wang J, Li D L, Shang F N, Kang X Y. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Sci Rep, 2017, 7: 5281.
doi: 10.1038/s41598-017-05661-x pmid: 28706219
[4] Lei X N, Ning Y J, Eid Elesawi I, Yang K, Chen C L, Wang C, Liu B. Heat stress interferes with chromosome segregation and cytokinesis during male meiosis in Arabidopsis thaliana. Plant Signal Behav, 2020, 15: 1746985.
[5] 石春林, 骆宗强, 江敏, 侍永乐, 李映雪, 宣守丽, 刘杨, 杨沈斌, 于庚康. 减数分裂期高温对水稻穗粒数影响的定量分析. 中国水稻科学, 2017, 31: 658-664.
doi: 10.16819/j.1001-7216.2017.7032
Shi C L, Luo Z Q, Jiang M, Shi Y L, Li Y X, Xuan S L, Liu Y, Yang S B, Yu G K. An quantitative analysis of high temperature effects during meiosis stage on rice grain number per panicle. Chin J Rice Sci, 2017, 31: 658-664 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.7032
[6] Ning Y J, Liu Q P, Wang C, Qin E D, Wu Z H, Wang M H, Yang K, Elesawi I E, Chen C L, Liu H, et al. Heat stress interferes with formation of double-strand breaks and homolog Synapsis. Plant Physiol, 2021, 185: 1783-1797.
[7] Fu H Q, Zhao J Y, Ren Z M, Yang K, Wang C, Zhang X H, Elesawi I E, Zhang X H, Xia J, Chen C L, et al. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. Plant Physiol, 2022, 188: 1210-1228.
[8] Fu H, Yang K, Zhang X H, Zhao J Y, Elesawi I E, Liu H, Xia J, Yu G H, Chen C L, Wang C, et al. Mechanistic insights of high temperature-interfered meiosis in autotetraploid Arabidopsis thaliana. bioRxiv, 2021-05. Print.
[9] Li Y L, Ma H H, Wu Y L, Ma Y Z, Yang J, Li Y W, Yue D D, Zhang R, Kong J, Lindsey K, et al. Single-cell transcriptome atlas and regulatory dynamics in developing cotton anthers. Adv Sci, 2024, 11: e2304017.
[10] 高居荣, 宋雪皎, 王树芸, 韩秀兰, 谷淑波, 樊广华, 张吉旺. 花粉母细胞减数分裂细胞及染色体变化研究. 实验室科学, 2017, 20(6): 6-9.
Gao J R, Song X J, Wang S Y, Han X L, Gu S B, Fan G H, Zhang J W. Study on the changes of cells and chromosomes in pollen mother cells meiosis. Lab Sci, 2017, 20(6): 6-9 (in Chinese with English abstract).
[11] 辛昊阳, 兰月, 施季森, 戴兆霞, 席梦利. 高质量杨树粗线期染色体制片及荧光原位杂交. 分子植物育种, 2016, 14: 655-659.
Xin H Y, Lan Y, Shi J S, Dai Z X, Xi M L. The high quality slides of pachytene chromosome preparation and fluorescence in situ hybridization in Populus deltoides. Mol Plant Breed, 2016, 14: 655-659 (in Chinese with English abstract).
[12] Wang Y Z, Zhao Q Z, Qin X D, Yang S Q, Li Z A, Li J, Lou Q F, Chen J F. Identification of all homoeologous chromosomes of newly synthetic allotetraploid Cucumis × hytivus and its wild parent reveals stable subgenome structure. Chromosoma, 2017, 126: 713-728.
[13] Xin H Y, Zhang T, Han Y H, Wu Y F, Shi J S, Xi M L, Jiang J M. Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides. Chromosoma, 2018, 127: 313-321.
[14] Azumi Y, Toyama T, Igarashi A, Suzuki H. A sensitive fluorescence in situ hybridization procedure applicable to whole stages of male meiosis of Arabidopsis thaliana. Chromosome Sci, 2001, 5: 1-6.
[15] 康向阳, 朱之悌, 张志毅. 毛白杨花粉母细胞减数分裂及其进程的研究. 北京林业大学学报, 2000, 22(6): 5-7.
Kang X Y, Zhu Z D, Zhang Z Y. Meiosis and its stages of pollen mother cells in Chinese white poplar. J Beijing For Univ, 2000, 22(6): 5-7 (in Chinese with English abstract).
[16] 张志胜, 卢永根, 刘向东, 冯九焕. 水稻小孢子形成和发育过程中胼胝质的动态变化. 作物学报, 2007, 33: 1293-1298.
Zhang Z S, Lu Y G, Liu X D, Feng J H. Dynamic changes of callose in microsporogenesis and microgametogenesis of rice (Oryza sativa L.). Acta Agron Sin, 2007, 33: 1293-1298 (in Chinese with English abstract).
[17] 徐婉约, 王应祥. 染色体展片法观察拟南芥雄性减数分裂过程中的染色体形态. 植物学报, 2019, 54: 620-624.
doi: 10.11983/CBB19127
Xu W Y, Wang Y X. Chromosome behaviors of male meiocytes by chromosome spread in Arabidopsis thaliana. Chin Bull Bot, 2019, 54: 620-624 (in Chinese with English abstract).
[18] Li Y F, Huang Y M, Sun H Y, Wang T Y, Ru W, Pan L L, Zhao X M, Dong Z B, Huang W, Jin W W. Heat shock protein 101 contributes to the thermotolerance of male meiosis in maize. Plant Cell, 2022, 34: 3702-3717.
[19] 葛洁, 张月乔, 田树娟, 袁黎. 西瓜花粉母细胞减数分裂进程观察. 中国瓜菜, 2020, 33(3): 16-22.
Ge J, Zhang Y Q, Tian S J, Yuan L. Observation on meiosis process of watermelon pollen mother cell. China Cucurbits Veg, 2020, 33(3): 16-22 (in Chinese with English abstract).
[20] Yan H, Han J L, Jin S K, Han Z G, Si Z F, Yan S Y, Xuan L S, Yu G R, Guan X Y, Fang L, et al. Post-polyploidization centromere evolution in cotton. Nat Genet, 2025, 57: 1021-1030.
[21] 王君, 康向阳, 李代丽, 景艳春, 张正海. 通辽杨花粉母细胞减数分裂及其染色体行为研究. 西北植物学报, 2006, 26: 2231-2238.
Wang J, Kang X Y, Li D L, Jing Y C, Zhang Z H. Meiosis and chromosome behavior of pollen mother cell in Populus simonii Carr. × P.nigra L. ‘Tongliao'. Acta Bot Boreali-Occident Sin, 2006, 26: 2231-2238 (in Chinese with English abstract).
[22] 祁传磊, 李开隆, 肖静, 李志新, 靳春莲, 滕文华. 大青杨花粉母细胞减数分裂及其发育. 东北林业大学学报, 2009, 37(3): 72-75.
Qi C L, Li K L, Xiao J, Li Z X, Jin C L, Teng W H. Meiosis of pollen mother cells and pollen development of Populus ussuriensis. J Northeast For Univ, 2009, 37(3): 72-75 (in Chinese with English abstract).
[23] d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R. Turning meiosis into mitosis. PLoS Biol, 2009, 7: e1000124.
[24] Wang C, Liu Q, Shen Y, Hua Y F, Wang J J, Lin J R, Wu M G, Sun T T, Cheng Z K, Mercier R, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol, 2019, 37: 283-286.
doi: 10.1038/s41587-018-0003-0 pmid: 30610223
[25] Wang Y Z, Fuentes R R, van Rengs W M J, Effgen S, Zaidan M W A M, Franzen R, Susanto T, Fernandes J B, Mercier R, Underwoodbiao C J. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes. Nat Genet, 2024, 56: 1075-1079.
[1] 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466.
[2] 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188.
[3] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[4] 陈佳伟, 林艳, 张明星, 周诗晶, 饶力群, 周池, 李鑫. 贝莱斯芽孢杆菌YCH92对棉花根际土壤微生物群落及棉花产量的影响[J]. 作物学报, 2025, 51(10): 2821-2835.
[5] 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232.
[6] 谢章书, 谢学方, 屠小菊, 刘爱玉, 董合忠, 周仲华. 植物激素对棉花蕾铃脱落的调控研究进展[J]. 作物学报, 2025, 51(1): 1-29.
[7] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[8] 艾莎, 李莎, 方治伟, 李论, 李甜甜, 高利芬, 陈利红, 肖华锋, 万人静, 闫多子, 武星廷, 彭海, 韩瑞玺, 周俊飞. 棉花MNP标记位点开发及其在DNA指纹图谱构建中的应用[J]. 作物学报, 2024, 50(9): 2267-2278.
[9] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[10] 乐愉, 王涛, 张献龙, 林忠旭. 陆地棉重组自交系再生能力和遗传转化效率筛选[J]. 作物学报, 2024, 50(5): 1172-1180.
[11] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[12] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[13] 李万, 李成, 程敏, 吴芳. 磷转运蛋白StPHO1.2提高马铃薯耐热性[J]. 作物学报, 2024, 50(2): 394-402.
[14] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[15] 尚红燕, 普静, 柯会锋, 谷淇深, 孙正文, 杨君, 王国宁, 张艳, 卢怀玉, 徐东永, 吴立强, 马峙英, 王省芬, 吴金华. 不同种植环境下国内外棉花种质资源的遗传多样性分析与评价[J]. 作物学报, 2024, 50(10): 2528-2537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!