作物学报 ›› 2025, Vol. 51 ›› Issue (3): 621-631.doi: 10.3724/SP.J.1006.2025.44120
张金泽1(), 周庆国2, 杨旭1, 王倩1, 肖莉晶1, 金海润1, 欧阳青静1, 余坤江1, 田恩堂1,*(
)
ZHANG Jin-Ze1(), ZHOU Qing-Guo2, YANG Xu1, WANG Qian1, XIAO Li-Jing1, JIN Hai-Run1, OU-YANG Qing-Jing1, YU Kun-Jiang1, TIAN En-Tang1,*(
)
摘要:
菌核病是油菜的主要病害, 侵染后能导致油菜大幅减产。本研究对200份芥菜型油菜株系进行了菌核病抗性鉴定, 并从中筛选出部分高抗性育种材料。然后选取高抗株系G21-243-1 (HR)和感病株系G21-149-2 (LR)作为研究材料, 通过实验室模拟核盘菌侵染12 h、24 h、36 h后的叶片为材料进行转录组分析(RNA-Seq), 共获得138.16 Gb的Clean Data。以菌核病感病株系为对照, 以接种菌核病的同时期抗病株系为处理组, 进行差异基因表达分析后, 共检测到1899个上调表达基因, 1330个下调基因表达, 在2个时期同时检测到445个差异表达基因, 在3个时期同时检测到90个差异表达基因。对全部差异表达基因进行GO和KEGG功能分析, 在KEGG分析中显著富集的通路为Plant-pathogen interactions、Plant hormone signaling、MAPK signaling pathways-plants。结合转录组分析检测到的DEG及功能分析结果, 初步筛选出20个菌核病抗性相关的候选基因, 并随机选取其中6个候选基因进行了qRT-PCR分析。本研究的开展可为解析菌核病侵染寄生植物基因表达特性、菌核病抗性基因筛选及油菜的菌核病抗性育种奠定基础。
[1] | 白桂萍, 谢雄泽, 谢捷, 尹羽丰, 褚乾梅, 张清伟. 我国油菜生产布局时空演变及影响因素分析. 中国油脂, 2023, 48(4): 1-6. |
Bai G P, Xie X Z, Xie J, Yin Y F, Chu Q M, Zhang Q W. Analysis on the temporal and spatial evolution and influencing factors of oilseed rape production layout in China. China Oils Fats, 2023, 48(4): 1-6 (in Chinese with English abstract). | |
[2] | 胡志勇, 鲜孟筑, 李俊. 我国油菜品种改良现状及发展趋势. 中国农业大学学报, 2024, 29(3): 50-62. |
Hu Z Y, Xian M Z, Li J. Current situation and development trends of rapeseed variety improvement in China. J China Agric Univ, 2024, 29(3): 50-62 (in Chinese with English abstract). | |
[3] |
韩俣天, 何晓莹, 任静, 张建昆, 罗延青, 陈苇, 董云松, 李庆刚, 田志梅, 程小毛, 俎峰. 云南省芥菜型油菜菌核病抗性鉴定及抗性位点全基因组关联分析. 中国油料作物学报, 2023, 45: 1128-1140.
doi: 10.19802/j.issn.1007-9084.2023209 |
Han Y T, He X Y, Ren J, Zhang J K, Luo Y Q, Chen W, Dong Y S, Li Q G, Tian Z M, Cheng X M, Zu F. Identification of resistance to Sclerotinia sclerotiorum and genome-wide association analysis of resistance sites in Brassica juncea from Yunnan province. Chin J Oil Crop Sci, 2023, 45: 1128-1140 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2023209 |
|
[4] | Wu J, Cai G Q, Tu J Y, Li L X, Liu S, Luo X P, Zhou L P, Fan C C, Zhou Y M. Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One, 2013, 8: e67740. |
[5] | Yang B, Rahman M H, Liang Y, Shah S, Kav N N V. Characterization of defense signaling pathways of Brassica napus and Brassica carinata in response to Sclerotinia sclerotiorum challenge. Plant Mol Biol Rep, 2010, 28: 253-263. |
[6] | 蔺自敏. 油菜菌核病发病特点及防治措施. 安徽农学通报, 2021, 27(18): 96-97. |
Lin Z M. Occurrence characteristics and control measures of Sclerotinia sclerotiorum in rapeseed. Anhui Agric Sci Bull, 2021, 27(18): 96-97 (in Chinese). | |
[7] | 任卿虹. 油菜栽培技术与提高种植效益的措施. 种子科技, 2024, 42(15): 146-148. |
Ren Q H. Cultivation techniques of rape and measures to improve planting efficiency. Seed Sci Technol, 2024, 42(15): 146-148 (in Chinese). | |
[8] | 蒋丹. 油菜主要病虫害及防治方法. 种子科技, 2024, 42(3): 110-112. |
Jiang D. Main diseases and insect pests of rape and their control methods. Seed Sci Technol, 2024, 42(3): 110-112 (in Chinese). | |
[9] | 惠成章, 赵丽丽, 刘爱群. 中国油菜种业发展现状与对策研究. 园艺与种苗, 2024, 44(2): 92-94. |
Hui C Z, Zhao L L, Liu A Q. Research on the current situation and countermeasures of rape seed industry development in China. Hortic Seed, 2024, 44(2): 92-94 (in Chinese with English abstract). | |
[10] | Ding L N, Li T, Guo X J, Li M, Liu X Y, Cao J, Tan X L. Sclerotinia stem rot resistance in rapeseed: recent progress and future prospects. J Agric Food Chem, 2021, 69: 2965-2978. |
[11] |
黄小琴, 张蕾, 杨潇湘, 张重梅, 余垚颖, 邓越, 刘勇. 基于抗病评价解析西南区油菜主要病害抗病育种现状. 中国油料作物学报, 2023, 45: 1103-1108.
doi: 10.19802/j.issn.1007-9084.2023215 |
Huang X Q, Zhang L, Yang X X, Zhang Z M, Yu Y Y, Deng Y, Liu Y. Analysis resistance breeding progression of Brassica napus in Southwest China based on evaluation of disease resistance. Chin J Oil Crop Sci, 2023, 45: 1103-1108 (in Chinese with English abstract). | |
[12] | Muhammad U Q. 甘蓝型油菜菌核病抗性基因和调控途径鉴定. 华中农业大学博士学位论文, 湖北武汉, 2020. |
Muhammad U Q. Identification of Resistant Genes and Pathways Involved in Resistance for Sclerotinia Stem Rot in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract). | |
[13] | Zhang F Q, Huang J Y, Tang M Q, Cheng X H, Liu Y Y, Tong C B, Yu J Y, Sadia T, Dong C H, Liu L Y, Tang B J, Chen J G, Liu S Y. Syntenic quantitative trait loci and genomic divergence for Sclerotinia resistance and flowering time in Brassica napus. J Integr Plant Biol, 2019, 61: 75-88. |
[14] | 杨玉涵, 曹嘉懿, 蔡新忠. 油菜miR6030通过靶标两个编码CC-NBS-LRR蛋白的基因调控对核盘菌的抗性. 植物病理学报, 2023, 53: 277-286. |
Yang Y H, Cao J Y, Cai X Z. Brassica napus miR6030 negatively regulates resistance to Sclerotinia sclerotiorum via targeting two genes encoding CC-NBS-LRR proteins. Acta Phytopathol Sin, 2023, 53: 277-286 (in Chinese with English abstract). | |
[15] | 汤依唯. 中介因子复合体亚基BnMED16和延伸因子复合体亚基BnELP4抗油菜菌核病的功能研究. 湖北大学硕士学位论文, 湖北武汉, 2021. |
Tang Y W. Study on the Mechanism of Mediator Complex Subunit BnMED16 and Elongator Complex Subunit BnELP4 in the Sclerotinia sclerotiorum Resistance of Rape. MS Thesis of Hubei University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract). | |
[16] | Rana K, Ding Y J, Banga S S, Liao H M, Zhao S Q, Yu Y, Qian W. Sclerotinia sclerotiorum thioredoxin1 (SsTrx1) is required for pathogenicity and oxidative stress tolerance. Mol Plant Pathol, 2021, 22: 1413-1426. |
[17] | Zhao J W, Meng J L. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet, 2003, 106: 759-764. |
[18] |
Zhang K, Liu F, Wang Z X, Zhuo C J, Hu K N, Li X X, Wen J, Yi B, Shen J X, Ma C Z, Fu T D, Tu J X. Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotiorum in Brassica napus. Plant Physiol, 2022, 190: 2757-2774.
doi: 10.1093/plphys/kiac439 pmid: 36130294 |
[19] | Mei J Q, Liu Y, Wei D Y, Wittkop B, Ding Y J, Li Q F, Li J N, Wan H F, Li Z Y, Ge X H, Frauen M, Snowdon R J, Qian W, Friedt W. Transfer of Sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theor Appl Genet, 2015, 128: 639-644. |
[20] | Mei J Q, Shao C G, Yang R H, Feng Y X, Gao Y, Ding Y J, Li J N, Qian W. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theor Appl Genet, 2020, 133: 1313-1319. |
[21] | 谢永俊, 刘旭云, 万洪辉. 云南地方油菜种质资源抗(耐)病毒病、菌核病和霜霉病的鉴定研究. 云南农业大学学报, 2001, 16(2): 89-92. |
Xie Y J, Liu X Y, Wan H H. Evaluation on resistance (tolerance) of Yunnan rape germplasm to virus, sclerotiniose and downy mildes. J Yunnan Agric Univ, 2001, 16(2): 89-92 (in Chinese with English abstract). | |
[22] | Roy N N. Interspecific transfer of Brassica juncea-type high blackleg resistance to Brassica napus. Euphytica, 1984, 33: 295-303. |
[23] | Srivastava S K. Peroxidase and Poly-Phenol oxidase in Brassica juncea plants infected with Macrophomina phaseolina (tassai) goid. and their implication in disease resistance. J Phytopathol, 1987, 120: 249-254. |
[24] | Kumar A. Use of physiological indices as a screening technique for drought tolerance in oilseed Brassica species. Ann Bot, 1998, 81: 413-420. |
[25] | Phutela A, Jain V, Dhawan K, Nainawatee H S. Proline metabolism under water stress in the leaves and roots of Brassica juncea cultivars differing in drought tolerance. J Plant Biochem Biotechnol, 2000, 9: 35-39. |
[26] |
Østergaard L, Kempin S A, Bies D, Klee H J, Yanofsky M F. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J, 2006, 4: 45-51.
doi: 10.1111/j.1467-7652.2005.00156.x pmid: 17177784 |
[27] | Liu Y B, Wei W, Ma K P, Darmency H. Spread of introgressed insect-resistance genes in wild populations of Brassica juncea: a simulated in vivo approach. Transgenic Res, 2013, 22: 747-756. |
[28] |
Wilson R A, Sangha M K, Banga S S, Atwal A K, Gupta S. Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea. J Environ Biol, 2014, 35: 383-387.
pmid: 24665766 |
[29] | Ding Y J, Mei J Q, Li Q F, Liu Y, Wan H F, Wang L, Becker H C, Qian W. Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genet Resour Crop Evol, 2013, 60: 1615-1619. |
[30] | 殷生亮. 甘蓝型油菜抗菌核病的遗传分析和种质创新. 扬州大学硕士学位论文, 江苏扬州, 2021. |
Yin S L. Genetic Analysis and Germplasm Innovation of Sclerotinia Sclerotiorum Resistance in Brassica Napus. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract). | |
[31] | 杨旭. 芥菜型油菜菌核病抗性QTL定位及候选基因分析. 贵州大学硕士学位论文, 贵州贵阳, 2024. |
Yang X. QTL Mapping and Candidate Gene Analysis of Sclerotinia sclerotiorum Resistance in Brassica juncea. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2024 (in Chinese with English abstract). | |
[32] | Kim D, Langmead B, Hisat S S. A fast spliced aligner with low memory requirements. Biochem Res Methods, 2015, 12: 357-360. |
[33] |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290-295.
doi: 10.1038/nbt.3122 pmid: 25690850 |
[34] | Mei J Q, Wei D Y, Disi J O, Ding Y J, Liu Y, Qian W. Screening resistance against Sclerotinia sclerotiorum in Brassica crops with use of detached stem assay under controlled environment. Eur J Plant Pathol, 2012, 134: 599-604. |
[35] |
Miller A C, Obholzer N D, Shah A N, Megason S G, Moens C B. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res, 2013, 23: 679-686.
doi: 10.1101/gr.147322.112 pmid: 23299976 |
[36] | Liu J, Zuo R, He Y Z, Zhou C, Yang L L, Gill R A, Bai Z T, Zhang X, Liu Y Y, Cheng X H, Huang J Y. Analysis of tissue-specific defense responses to Sclerotinia sclerotiorum in Brassica napus. Plants (Basel), 2022, 11: 2001. |
[37] | Chittem K, Yajima W R, Goswami R S, Del Río Mendoza L E. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines. PLoS One, 2020, 15: e0229844. |
[38] | Xu B J, Gong X, Chen S, Hu M L, Zhang J F, Peng Q. Transcriptome analysis reveals the complex molecular mechanisms of Brassica napus-Sclerotinia sclerotiorum interactions. Front Plant Sci, 2021, 12: 716935. |
[39] | Wu J, Zhao Q, Yang Q Y, Liu H, Li Q Y, Yi X Q, Cheng Y, Guo L, Fan C C, Zhou Y M. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007. |
[40] | Hossain M M, Sultana F, Li W Q, Tran L S P, Mostofa M G. Sclerotinia sclerotiorum (lib.)de bary: insights into the pathogenomic features of a global pathogen. Cells, 2023, 12: 1063. |
[41] | Joshi R K, Megha S, Rahman M H, Basu U, Kav N N V. A global study of transcriptome dynamics in canola (Brassica napus L.)responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Gene, 2016, 590: 57-67. |
[42] | Liang W W, Yang B, Yu B J, Zhou Z L, Li C, Jia M, Sun Y, Zhang Y, Wu F F, Zhang H F, Wang B Y, Deyholos M K, Jiang Y Q. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genomics, 2013, 14: 392. |
[43] | Wang Z, Tan X L, Zhang Z Y, Gu S L, Li G Y, Shi H F. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Plant Sci, 2012, 184: 75-82. |
[44] | Liu F, Li X X, Wang M R, Wen J, Yi B, Shen J X, Ma C Z, Fu T D, Tu J X. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Plant Biotechnol J, 2018, 16: 911-925. |
[45] |
Mikkelsen M D, Petersen B L, Glawischnig E, Jensen A B, Andreasson E, Halkier B A. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol, 2003, 131: 298-308.
doi: 10.1104/pp.011015 pmid: 12529537 |
[46] |
Lin L, Zhang X R, Fan J L, Li J W, Ren S C, Gu X, Li P P, Xu M L, Xu J Y, Lei W J, Liu D X, Sun Q F, Cai G Q, Yang Q Y, Wang Y P, Wu J. Natural variation in BnaA07.MKK9 confers resistance to Sclerotinia stem rot in oilseed rape. Nat Commun, 2024, 15: 5059.
doi: 10.1038/s41467-024-49504-6 pmid: 38871727 |
[47] |
Madloo P, Lema M, Francisco M, Soengas P. Role of major glucosinolates in the defense of kale against Sclerotinia sclerotiorum and Xanthomonas campestris pv.campestris. Phytopathology, 2019, 109: 1246-1256.
doi: 10.1094/PHYTO-09-18-0340-R pmid: 30920356 |
[48] | Zhang Y Y, Huai D X, Yang Q Y, Cheng Y, Ma M, Kliebenstein D J, Zhou Y M. Overexpression of three glucosinolate biosynthesis genes in Brassica napus identifies enhanced resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One, 2015, 10: e0140491. |
[49] | Fan Z X, Lei W X, Sun X L, Yu B, Wang Y Z, Yang G S. The association of Sclerotinia sclerotiorum resistance with glucosinolates in Brassica napus double-low DH 15population. J Plant Pathol, 2008, 90: 43-48. |
[50] | 费丹丹, 王军伟, 吴小媚, 黄惠萍, 毛舒香, 吴秋云, 黄科. 细胞色素P450基因家族参与植物硫代葡萄糖苷生物合成的研究进展. 中国蔬菜, 2023, (5): 30-41. |
Fei D D, Wang J W, Wu X M, Huang H P, Mao S X, Wu Q Y, Huang K. Research progress of cytochrome P450 gene family taking part in biosynthesis of plant glucosinolates. China Veget, 2023, (5): 30-41 (in Chinese with English abstract). | |
[51] | 王萌, 解红娥, 王凌云, 解晓红, 李江辉, 吴宇浩, 张鸿兴, 武宗信. 高硫苷油菜对甘薯茎线虫病的防治效果. 江苏农业科学, 2022, 50(11): 119-123. |
Wang M, Xie H E, Wang L Y, Xie X H, Li J H, Wu Y H, Zhang H X, Wu Z X. Control effect of rape with high glucosinolate content on sweet potato stem nematode disease. Jiangsu Agric Sci, 2022, 50(11): 119-123 (in Chinese with English abstract). | |
[52] | 雷建军, 陈长明, 陈国菊, 曹必好, 邹丽芳, 吴双花, 朱张生. 硫苷及其生物合成分子生物学机理研究进展. 华南农业大学学报, 2019, 40(5): 59-70. |
Lei J J, Chen C M, Chen G J, Cao B H, Zou L F, Wu S H, Zhu Z S. Progress in glucosinolates and its molecular mechanism of biosynthesis. J South China Agric Univ, 2019, 40(5): 59-70 (in Chinese with English abstract). | |
[53] | 赵吉春, 余洁, 谭正卫, 颜鑫艺, 周海燕, 雷小娟, 明建. 发酵十字花科蔬菜中硫代葡萄糖苷代谢研究进展. 食品科学, 2021, 42(23): 381-389. |
Zhao J C, Yu J, Tan Z W, Yan X Y, Zhou H Y, Lei X J, Ming J. Recent advances in glucosinolates metabolism in fermented cruciferous vegetables. Food Sci, 2021, 42(23): 381-389 (in Chinese with English abstract). | |
[54] | Zhang J, Song T T, Meng X N, Han Z Y, Yao Y C. Early phenylpropanoid biosynthetic pathway genes are responsible for flavonoid accumulation in the leaves of three crabapple (Malus spp.)cultivars. J Hortic Sci Biotechnol, 2015, 90: 489-502. |
[55] |
张秋平, 文李, 张振乾, 王峰, 官春云. 抗感菌核病甘蓝型油菜近等基因系盛花期叶片转录组比较分析. 华北农学报, 2020, 35(3): 168-177.
doi: 10.7668/hbnxb.20190761 |
Zhang Q P, Wen L, Zhang Z Q, Wang F, Guan C Y. Comparative transcriptomic analysis of Brassica napus near-isogenic line resistant to Sclerotinia sclerotirium at flowering stage. Acta Agric Boreali-Sin, 2020, 35(3): 168-177 (in Chinese with English abstract). | |
[56] | Dong N Q, Lin H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J Integr Plant Biol, 2021, 63: 180-209. |
[57] | Desgagné-Penix I. Biosynthesis of alkaloids in Amaryllidaceae plants: a review. Phytochem Rev, 2021, 20: 409-431. |
[58] |
尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径. 中国生物化学与分子生物学报, 2022, 38: 1467-1476.
doi: 10.13865/j.cnki.cjbmb.2022.03.1604 |
Shang J, Wu W Z, Ma Y G. Phenylpropanoid metabolism pathway in plants. Chin J Biochem Mol Biol, 2022, 38: 1467-1476 (in Chinese with English abstract).
doi: 10.13865/j.cnki.cjbmb.2022.03.1604 |
|
[59] | 武颖, 李好样, 高洁, 朱瑞涛, 陈博坤. 木质素抗氧化活性的构效关系研究及应用进展. 精细化工, 2023, 40: 929-940. |
Wu Y, Li H Y, Gao J, Zhu R T, Chen B K. Structure-antioxidant activity relationship and application progress of lignin. Fine Chem, 2023, 40: 929-940 (in Chinese with English abstract). | |
[60] | Nesterova N A, Shtro A A, Panarin E F. Synthesis and antiviral activity of copolymers of hydroxycinnamic acid with N-vinylamides. Dokl Chem, 2023, 513: 389-392. |
[1] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[2] | 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156. |
[3] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[4] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[5] | 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956. |
[6] | 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685. |
[7] | 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339. |
[8] | 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353. |
[9] | 张锦辉, 肖姿仪, 李旭华, 张明, 贾春兰, 潘振远, 邱法展. 玉米突变体caspl2b2的耐盐特性评价及转录组分析[J]. 作物学报, 2024, 50(12): 3144-3154. |
[10] | 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817. |
[11] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[12] | 丁孟丽, 王茹茵, 施栋晟, 李莹博, 雷洁, 陈洪宇, 申清文, 王桂凤. 玉米小籽粒突变体mn-Mu的基因克隆与转录组分析[J]. 作物学报, 2023, 49(11): 3122-3130. |
[13] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[14] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[15] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
|