欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (4): 1061-1076.doi: 10.3724/SP.J.1006.2025.41054

• 耕作栽培·生理生化 • 上一篇    下一篇

CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响

王娇(), 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇()   

  1. 山西农业大学农学院, 山西太谷 030801
  • 收稿日期:2024-08-08 接受日期:2024-12-12 出版日期:2025-04-12 网络出版日期:2024-12-18
  • 通讯作者: 郝兴宇, E-mail: haoxingyu1976@126.com
  • 作者简介:E-mail: wj0704zsc@126.com
  • 基金资助:
    山西农业大学青年拔尖创新人才支持计划项目(BJRC201602);山西农业大学农学院研究生教育改革与质量提升工程顶目(2023YDT03);山西农业大学农学院研究生教育改革与质量提升工程顶目(2023YCX05);山西农业大学农学院研究生教育改革与质量提升工程顶目(2023YCX42)

Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves

WANG Jiao(), BAI Hai-Xia, HAN Yu-Yan, LIANG Hui, FENG Ya-Nan, ZHANG Dong-Sheng, LI Ping, ZONG Yu-Zheng, SHI Xin-Rui, HAO Xing-Yu()   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2024-08-08 Accepted:2024-12-12 Published:2025-04-12 Published online:2024-12-18
  • Contact: E-mail: haoxingyu1976@126.com
  • Supported by:
    Youth Talents Support Program of Shanxi Agricultural University(BJRC201602);Graduate Education Reform and Quality Improvement Program of College of Agriculture, Shanxi Agricultural University(2023YDT03);Graduate Education Reform and Quality Improvement Program of College of Agriculture, Shanxi Agricultural University(2023YCX05);Graduate Education Reform and Quality Improvement Program of College of Agriculture, Shanxi Agricultural University(2023YCX42)

摘要:

单一的大气CO2浓度升高或温度升高均已被证实对小麦的生长和产量产生显著影响, 然而, 关于CO2浓度和温度共同升高对小麦整个生育期的影响研究很少。本研究以冬小麦品种“良星99”为材料, 利用人工控制气候室, 设置2种CO2浓度水平(环境大气CO2浓度和环境大气CO2浓度+200 μmol mol-1)和2种温度水平(环境温度和环境温度+2℃), 测定其对冬小麦物候期、光合作用、碳代谢、氮同化和产量的影响。 结果表明:大气CO2浓度升高使拔节期、开花期和灌浆期净光合速率和水分利用效率增加, 使灌浆期可溶性糖含量升高, 虽灌浆期谷氨酰胺合成酶和谷丙转氨酶活性降低, 但仍可通过增加穗数, 进而使生物量和产量增加32.8%和30.0%。升温会缩短冬小麦全生育期, 使拔节期谷氨酸合成酶活性下降, 开花期水分利用效率、可溶性糖、淀粉和蔗糖含量、谷氨酸合成酶活性降低, 灌浆期蔗糖合成酶和谷氨酰胺合成酶活性下降, 生物量降低12.2%, 产量无显著影响。大气CO2浓度升高促进升温下冬小麦提前开花, 并延长花后籽粒灌浆时间。升温条件下, 大气CO2浓度升高通过上调拔节期TaRUBP1的表达进而提高净光合速率, 提高拔节期可溶性糖含量和开花期蔗糖含量, 从而缓解升温对光合同化的负面影响。升温条件下, CO2浓度升高上调开花期TaGS2和灌浆期TaNR的表达进而增加开花期谷氨酰胺合成酶活性和灌浆期硝酸还原酶活性, 缓解升温对氮同化的抑制作用。此外, CO2浓度升高减轻升温对冬小麦生物量的负面影响, 并通过增加穗数提高升温条件下冬小麦产量23.9%。总之, CO2浓度通过提高光合能力、增加光合同化物积累、促进氮同化、延长灌浆时间等缓解升温对冬小麦生物量的负效应, 并通过增加穗数提高冬小麦产量。

关键词: 冬小麦, 碳氮代谢, 生长, 产量, CO2浓度升高, 温度升高

Abstract:

It is well established that either elevated atmospheric CO2 concentration or increased temperature alone can significantly influence wheat growth and yield. However, limited research has explored the combined effects of elevated CO2 and increased temperature on wheat throughout its entire growth period. In this study, winter wheat (Triticum aestivum “Liangxing99”) was cultivated in environment-controlled chambers under two CO2 concentrations (ambient and ambient + 200 μmol mol-1 and two temperature regimes (ambient and ambient + 2℃). Phenological development, photosynthesis, carbohydrate metabolism, nitrogen assimilation, and yield were systematically investigated. Elevated CO2 enhanced the net photosynthetic rate and water use efficiency during the elongation, anthesis, and grain filling stages, while also increasing soluble sugar content during the grain filling stage. Although the activities of glutamine synthetase (GS) and glutamic-pyruvic transaminase (GPT) decreased during grain filling, elevated CO2 still increased biomass and yield by 32.8% and 30.0%, respectively, primarily by increasing the number of grains. In contrast, increased temperature shortened the overall growth period of winter wheat, reduced glutamate synthetase (GOGAT) activity during the elongation stage, and decreased soluble sugar, starch, and sucrose contents. Additionally, increased temperature lowered water use efficiency and GOGAT activity at anthesis, as well as sucrose synthase and GS activities during grain filling, resulting in a 12.2% reduction in biomass, though yield was not significantly affected. Elevated CO2 mitigated the adverse effects of increased temperature by advancing flowering, extending the grain filling period, and alleviating the inhibition of photosynthesis and nitrogen assimilation. Specifically, elevated CO2 upregulated TaRUBP1 expression during elongation, which enhanced the net photosynthetic rate and increased soluble sugar content at elongation and sucrose content at anthesis. Moreover, elevated CO2 upregulated TaGS2 expression at anthesis and TaNR expression during grain filling, which increased GS activity at anthesis and nitrate reductase (NR) activity during grain filling. These responses alleviated the inhibition of nitrogen assimilation caused by high temperature. Consequently, elevated CO2 mitigated the negative effects of increased temperature on biomass production, while enhancing yield by 23.9% under elevated temperature, primarily through an increased number of grains. In summary, elevated CO2 alleviated the negative impacts of increased temperature on winter wheat biomass by enhancing photosynthetic capacity, promoting the accumulation of photosynthetic assimilates, improving nitrogen assimilation, and extending the grain filling period. Additionally, it increased yield by boosting the number of grains under elevated temperature conditions.

Key words: winter wheat, carbon and nitrogen metabolism, growth, yield, elevated CO2 concentration, increased temperature

图1

小麦生长季各处理CO2浓度变化 CK: 环境CO2浓度, 环境温度; EC: 环境CO2浓度+200 μmol mol-1, 环境温度; ET: 环境CO2浓度, 环境温度+2℃; ECT: 环境CO2浓度+200 μmol mol-1, 环境温度+2℃。"

图2

小麦生长季各处理气温变化 处理同图1。"

表1

基因的引物信息"

基因
Gene
基因登录号
Gene ID
基因功能
Gene function
引物序列
Primer sequence (5′-3′)
TaActin AB181991 内参基因
Reference gene
F: GGAGAAGCTCGCTTACGTG
R: GGGCACCTGAACCTTTCTGA
TaRUBP KF801504.1 1,5-二磷酸核酮糖羧化/转移酶Ribulose-1,5-bisphosphate carboxylase/oxygenase F: ATTACTTGAATGCGACTGCG
R: CGGCAATAATGAGCCAAAGT
TaPATPaseβ-sub M16843.1 叶绿体ATP合成酶β亚基
ATP synthase β-subunit, chloroplastic
F: AATGATGCGGAACTTGGT
R: CATACGGCGGGAGTCAT
TaFd1 X75089.1 铁氧还蛋白
Ferredoxin
F: TCACCTGCCACGCCTAC
R: CATCGAGCAATTCATTCG
TaD1 M21352.1 PSII复合体D1蛋白
PSII protein D1
F: TGGGCTGACTTGGTTGAC
R: GAAGTTGCGGTCAATAAGGT
TaD2 EU492899.1 PSII复合体D2蛋白
PSII protein D2
F: AACTTGCTCGGTCTGTTC
R: GCCGCACCTAATACTCC
TaNR TC234027 硝酸还原酶
Nitrate reductase
F: GGCCAATTCYTTCATCTCCTTCTG
R: TACRTSCACAGATTGATGCGTCSA
TaNIR FJ527909.1 亚硝酸还原酶
Nitrite reductase
F: CAGGAGAAGGTGAAGCTGG
R: TCATGAACCGCCCATACTG
TaGS1 DQ124209.1 胞质谷氨酰胺合成酶
Glutamine synthetase, cytosolic
F: CGAGTCGATGAGGAAGGAC
R: CCCCAGCTGAAGGTGTTGA
TaGS2 DQ124212.1 质体谷氨酰胺合成酶
Glutamine synthetase, plastidial
F: AGAGAATCACGGAGCAAGC
R: ATCACGTCGAAACCTCCATC
TaFd-GOGAT TC394038 质体谷氨酸合酶
Glutamate synthetase, plastidial
F: TGGTGCCACCCAGCGAAG
R: AGCTCGTTTCCAGAAGATGCCTT

图3

CO2浓度和温度升高对冬小麦物候期的影响 处理同图1。"

图4

CO2浓度和温度升高对冬小麦叶绿素的影响 处理同图1。不同字母表示处理间差异显著(P ≤ 0.05)。"

图5

CO2浓度和温度升高对冬小麦光合参数的影响 处理同图1。不同字母表示处理间差异显著(P ≤ 0.05)。"

图6

CO2浓度和温度升高对冬小麦光合相关基因的影响 处理同图1。不同字母表示处理间差异显著(P ≤ 0.05)。"

图7

CO2浓度和温度升高对冬小麦碳水化合物代谢的影响 处理同图1。不同字母表示处理间差异显著(P ≤ 0.05)。"

图8

CO2浓度和温度升高对冬小麦氮同化的影响 处理同图1。不同字母表示处理间差异显著(P ≤ 0.05)。"

图9

CO2浓度和温度升高对冬小麦氮同化相关基因的影响 处理同图1。不同字母表示处理间差异显著(P ≤ 0.05)。"

图10

CO2浓度和温度升高对冬小麦生物量和产量的影响 处理同图1。不同字母表示处理间差异显著(P ≤ 0.05)。"

表2

CO2浓度和温度升高对冬小麦产量构成的影响"

年份
Year
处理
Treatment
单穗粒数
Grain number per spike
单位面积穗数
Spike number (m-2)
千粒重
1000-grain weight (g)
2019-2020 CK 35.13±0.79 ab 259.99±37.41 b 40.85±5.49 a
EC 36.28±1.62 a 331.49±23.88 b 44.84±2.27 a
ET 31.02±3.03 ab 285.99±13.20 b 40.55±1.92 a
ECT 28.22±3.28 b 412.74±19.63 a 38.73±0.99 a
2020-2021 CK 29.46±1.53 a 235.62±6.29 b 43.18±1.02 b
EC 29.55±1.64 a 328.24±25.38 a 46.47±1.22 a
ET 32.01±1.92 a 247.81±10.75 b 43.08±0.07 b
ECT 27.87±1.40 a 341.24±5.14 a 42.15±0.82 b
P-value 年份Year ns * ns
CO2 ns ** ns
T ns * ns
CO2´T ns ns ns

图11

CO2浓度和温度升高对冬小麦生物量和产量影响的PLS-PM分析 ES: 拔节期; AS: 开花期; GFS: 灌浆期。光合能力(潜变量)由指标净光合速率(观测变量)反映。碳代谢(潜变量)由指标可溶性糖、淀粉、蔗糖、SUS和SPS (观测变量)反映。氮同化(潜变量)由指标NR、GS、GOGAT和GPT (观测变量)反映。红色实线箭头和蓝色实线箭头分别指示正向和负向的因果关系; 灰色虚线箭头指示路径关系中的非显著性。箭头旁边的数字及其粗细程度共同体现路径系数的大小。潜变量的决定系数通过R2值具体呈现。***表示在P ≤ 0.001水平上显著; **表示在P ≤ 0.01水平上显著; *表示在P ≤ 0.05水平上显著。该模型的拟合优度值为0.6。"

[1] IPCC. Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge University Press, 2019. pp 3-36.
[2] IPCC. Global Warming of 1.5℃: Special Report on the Impacts of Global Warming of 1.5℃ Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press, 2018. pp 3-24.
[3] IPCC. Climate change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021. pp 3-32.
[4] Ortiz B A, Ault T R, Carillo C M, Chambers R G, Lobell D B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat Clim Change, 2021, 11: 306-312.
[5] Xu Z Z, Jiang Y L, Zhou G S. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front Plant Sci, 2015, 6: 701.
[6] Dusenge M E, Duarte A G, Way D A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol, 2019, 221: 32-49.
[7] Wang D, Heckathorn S A, Barua D, Joshi P, Hamilton E W, LaCroix J J. Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. Am J Bot, 2008, 95: 165-176.
doi: 10.3732/ajb.95.2.165 pmid: 21632342
[8] Wang M J, Xie B Z, Fu Y M, Chen D, Liu H, Liu G H, Liu H. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. Photosynth Res, 2015, 126: 351-362.
[9] Qiao Y Z, Zhang H Z, Dong B D, Shi C H, Li Y X, Zhai H M, Liu M Y. Effects of elevated CO2concentration on growth and water use efficiency of winter wheat under two soil water regimes. Agric Water Manag, 2010, 97: 1742-1748.
[10] Ainsworth E A, Davey P A, Bernacchi C J, Dermody O C, Heaton E A, Moore D J, Morgan P B, Naidu S L, Ra H Y, Zhu X G, et al. A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Change Biol, 2002, 8: 695-709.
[11] Högy P, Wieser H, Köhler P, Schwadorf K, Breuer J, Franzaring J, Muntifering R, Fangmeier A. Effects of elevated CO2on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biol, 2009, 11: 60-69.
[12] Petra H, Andreas F. Effects of elevated atmospheric CO2 on grain quality of wheat. J Cereal Sci, 2008, 48: 580-591.
[13] Ainsworth E A, Long S P. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob Change Biol, 2020, 27: 27-49.
[14] 韩雪, 郝兴宇, 王贺然, 林而达. FACE条件下冬小麦生长特征及产量构成的影响. 中国农学通报, 2012, 28(36): 154-159.
Han X, Hao X Y, Wang H R, Lin E D. Effect of free air CO2 Enrichment (FACE) on the growth and grain yield of winter wheat. Chin Agric Sci Bull, 2012, 28(36): 154-159 (in Chinese with English abstract).
[15] 韩雪, 郝兴宇, 王贺然, 李迎春, 林而达. 高浓度CO2对冬小麦旗叶和穗部氮吸收的影响. 中国农业气象, 2012, 33: 197-201.
doi: 10.3969/j.issn.1000-6362.2012.02.007
Han X, Hao X Y, Wang H R, Li Y C, Lin E D. Effect of free air CO2 enrichment on nitrogen absorption in leaf and head of winter wheat. Chin J Agrometeorol, 2012, 33: 197-201 (in Chinese with English abstract).
[16] Han X, Hao X Y, Lam S K, Wang H R, Li Y C, Wheeler T, Ju H, Lin E D. Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: a 3-year free-air CO2 enrichment experiment. Agric Ecosyst Environ, 2015, 209: 132-137.
[17] Eyshi R E, Webber H, Gaiser T, Naab J, Ewert F. Heat stress in cereals: mechanisms and modelling. Eur J Agron, 2015, 64: 98-113.
[18] Walker B J, VanLoocke A, Bernacchi C J, Ort D R. The costs of photorespiration to food production now and in the future. Annu Rev Plant Biol, 2016, 67: 107-129.
doi: 10.1146/annurev-arplant-043015-111709 pmid: 26865340
[19] Ruiz-Vera U M, Siebers M, Gray S B, Drag D W, Rosenthal D M, Kimball B A, Ort D R, Bernacchi C J. Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol, 2013, 162: 410-423.
doi: 10.1104/pp.112.211938 pmid: 23512883
[20] 赵广才, 常旭虹, 王德梅, 杨玉双, 冯金凤. 中国小麦生产发展潜力研究报告. 作物杂志, 2012, (3): 1-5.
Zhao G C, Chang X H, Wang D M, Yang Y S, Feng J F. Research report on development of China’s wheat production potential. Crops, 2012, (3): 1-5 (in Chinese with English abstract).
[21] Sun H, Wang Y, Wang L. Impact of climate change on wheat production in China. Eur J Agron, 2024, 153: 127066.
[22] Cai C, Yin X Y, He S Q, Jiang W Y, Si C F, Struik P C, Luo W H, Li G, Xie Y T, Xiong Y, et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biol, 2016, 22: 856-874.
[23] Zhang Y L, Lam S K, Li P, Zong Y Z, Zhang D S, Shi X R, Hao X Y, Wang J. Early-maturing cultivar of winter wheat is more adaptable to elevated [CO2] and rising temperature in the eastern Loess Plateau. Agric Forest Meteor, 2023, 332: 109356.
[24] 王娇, 李萍, 宗毓铮, 张东升, 史鑫蕊, 杨净, 郝兴宇. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响. 中国生态农业学报(中英文), 2023, 31: 325-335.
Wang J, Li P, Zong Y Z, Zhang D S, Shi X R, Yang J, Hao X Y. Effects of elevated atmospheric CO2 concentration and increased temperature on the metabolism of carbon and nitrogen in maize. Chin J Eco-Agric, 2023, 31: 325-335 (in Chinese with English abstract).
[25] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 61-148.
Gao J F. Experimental Instruction of Plant Physiology. Beijing: Higher Education Press, 2006. pp 61-148 (in Chinese).
[26] 郭茜茜. 大豆子粒蛋白质积累与碳代谢关系的研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2010.
Guo Q Q. Research on the Relationship between Protein Accumulation and Carbon Metabolism in Soybean grain. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2010 (in Chinese with English abstract).
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[28] Rezaei E E, Webber H, Asseng S, Boote K, Durand J L, Ewert F, Martre P, MacCarthy D S. Climate change impacts on crop yields. Nat Rev Earth Environ, 2023, 4: 831-846.
[29] 宗毓铮, 张函青, 李萍, 张东升, 林文, 薛建福, 高志强, 郝兴宇. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响. 中国农业科学, 2021, 54: 4984-4995.
doi: 10.3864/j.issn.0578-1752.2021.23.005
Zong Y Z, Zhang H Q, Li P, Zhang D S, Lin W, Xue J F, Gao Z Q, Hao X Y. Effects of elevated atmospheric CO2 concentration and temperature on photosynthetic characteristics, carbon and nitrogen metabolism in flag leaves and yield of winter wheat in north China. Sci Agric Sin, 2021, 54: 4984-4995 (in Chinese with English abstract).
[30] Johnston A, Reekie E. Regardless of whether rising atmospheric carbon dioxide levels increase air temperature, flowering phenology will be affected. Int J Plant Sci, 2008, 169: 1210-1218.
[31] Streck N A. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Cienc Rural, 2005, 35: 730-740.
[32] Ainsworth E A, Long S P. What we have learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 2005, 165: 351-371.
[33] Long S P, Osborne C P, Humphries S W. Photosynthesis, rising atmospheric CO2 concentration and climate change. Glob Change, 1997, 56: 381-393.
[34] Moore C E, Meacham-Hensold K, Lemonnier P, Slattery R A, Benjamin C, Bernacchi C J, Lawson T, Cavanagh A P. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J Exp Bot, 2021, 72: 2822-2844.
doi: 10.1093/jxb/erab090 pmid: 33619527
[35] Rogers A, Humphries S W. A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Glob Change Biol, 2000, 6: 1005-1011.
[36] Li S, Leakey A D, Moller C A, Montes C M, Sacks E J, Lee D, Ainsworth E A. Similar photosynthetic but different yield responses of C3 and C4 crops to elevated O3. Proc Natl Acad Sci USA, 2023, 120: e2313591120.
[37] Tahir I S A, Nakata N. Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. J Agron Crop Sci, 2005, 191: 106-115.
[38] Ji X M, Shiran B, Wan J L, Lewis D C, Jenkins C L D, Condon A G, Richards R A, Dolferus R. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ, 2010, 33: 926-942.
[39] 许振柱, 周广胜. 植物氮代谢及其环境调节研究进展. 应用生态学报, 2004, 15: 511-516.
Xu Z Z, Zhou G S. Research advance in nitrogen metabolism of plant and its environmental regulation. Chin J Appl Ecol, 2004, 15: 511-516 (in Chinese with English abstract).
[40] 郝蕴彰, 李萍, 宗毓铮, 张东升, 史鑫蕊, 郝兴宇. 大气CO2浓度和气温升高对藜麦生长及碳氮代谢的影响. 核农学报, 2023, 37: 1279-1287.
doi: 10.11869/j.issn.1000-8551.2023.06.1279
Hao Y Z, Li P, Zong Y Z, Zhang D S, Shi X R, Hao X Y. Effects of elevated CO2 concentration and increased air temperature on growth and the metabolism of carbon and nitrogen in Quinoa. J Nucl Agric Sci, 2023, 37: 1279-1287 (in Chinese with English abstract).
[41] Mohammadi S, Rydgren K, Bakkestuen V, Gillespie M A K. Impacts of recent climate change on crop yield can depend on local conditions in climatically diverse regions of Norway. Sci Rep, 2023, 13: 3633.
doi: 10.1038/s41598-023-30813-7 pmid: 36869138
[42] Yang Q, Li P, Zhang D S, Lin W, Hao X Y, Zong Y Z. Effects of elevated CO2 on the photosynthesis, chlorophyll fluorescence and yield of two wheat cultivars (Triticum aestivum L.) under persistent drought stress. Sustainability, 2023, 15: 1593.
[43] Abebe A, Pathak H, Singh S D, Bhatia A, Harit R C, Kumar V. Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north-west India. Agric Ecosyst Environ, 2016, 218: 66-72.
[1] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[2] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[3] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[4] 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004.
[5] 张晓丽, 刘晓燕, 夏雯雯, 李锦. 天山雪莲质膜水孔蛋白基因SiPIP1;3在番茄中的抗寒功能分析[J]. 作物学报, 2025, 51(4): 863-872.
[6] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[7] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[8] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
[9] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[10] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[11] 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743.
[12] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[13] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[14] 苏畅, 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉. 铝胁迫下水稻osalr3突变体对外源有机酸和植物生长调节物质的响应[J]. 作物学报, 2025, 51(3): 676-686.
[15] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!