作物学报 ›› 2025, Vol. 51 ›› Issue (4): 914-931.doi: 10.3724/SP.J.1006.2025.44123
周恩强(), 缪亚梅, 周瑶, 姚梦楠, 赵娜, 王永强, 朱宇翔, 薛冬, 李宗迪, 石宇欣, 李波, 汪凯华, 顾春燕, 王学军(
), 魏利斌(
)
ZHOU En-Qiang(), MIAO Ya-Mei, ZHOU Yao, YAO Meng-Nan, ZHAO Na, WANG Yong-Qiang, ZHU Yu-Xiang, XUE Dong, LI Zong-Di, SHI Yu-Xin, LI Bo, WANG Kai-Hua, GU Chun-Yan, WANG Xue-Jun(
), WEI Li-Bin(
)
摘要:
bZIP基因广泛参与种子发育、光信号调节和胁迫响应等生理过程。然而, 目前对豌豆PastbZIP基因调控种子发育知之甚少。为鉴定豌豆种子发育相关PastbZIP基因, 揭示其进化关系, 本研究利用生物信息学和种子发育转录组数据对PastbZIP基因家族进行鉴定与进化分析, 并通过比较基因组学挖掘种子发育相关PastbZIP基因, 同时利用蛋白互作网络和qRT-PCR对其验证。在豌豆种子发育转录组数据中共鉴定出62个PastbZIP基因, 根据系统进化特征将PastbZIP基因分为9组, 不同亚家族在蛋白理化性质、基因结构、保守基序等方面表现出进化多样性和差异性。共线性分析发现, 豌豆与大豆、苜蓿、拟南芥和蚕豆分别有54、23、8和22对共线性基因, 并且发现片段复制是PastbZIP基因家族扩张的主要驱动力, 而且这些基因的进化是通过纯化选择来实现的。KEGG富集分析显示, PastbZIP主要富集在植物激素信号转导通路中, 且PastbZIP启动子顺式作用元件中包含大量的激素响应元件, 有60个(96.8%) PastbZIP基因包含5种激素响应元件。通过同源比对在豌豆中发现10个与种子发育相关的候选基因, 且其蛋白互作基因均参与调控种子发育。综上所述, 本研究首次对豌豆种子发育相关PastbZIP家族成员进行了鉴定和进化分析, 并通过同源比对挖掘了种子发育候选基因, 研究结果将为研究豌豆bZIP基因调控种子发育提供重要参考。
[1] | Gudko V, Usatov A, Minkina T, Duplii N, Azarin K, Tatarinova T V, Sushkova S, Garg A, Denisenko Y. Dependence of the pea grain yield on climatic factors under semi-arid conditions. Agronomy, 2024, 14: 133. |
[2] | Yan L C, Xu Y, Yang F, Shi C H, Liu Y, Bi S. Characterization of odor profiles of pea milk varieties and identification of key odor-active compounds by molecular sensory science approaches using soybean milk as a reference. Food Chem, 2024, 445: 138696. |
[3] | Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull S B, Najda A. The current situation of pea protein and its application in the food industry. Molecules, 2022, 27: 5354. |
[4] | Li H Y, Lv Q Y, Deng J, Huang J, Cai F, Liang C G, Chen Q J, Wang Y, Zhu L W, Zhang X N, et al. Transcriptome analysis reveals key seed-development genes in common buckwheat (Fagopyrum esculentum). Int J Mol Sci, 2019, 20: 4303. |
[5] |
Liu N, Zhang G W, Xu S C, Mao W H, Hu Q Z, Gong Y M. Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L.) seed development. Front Plant Sci, 2015, 6: 1039.
doi: 10.3389/fpls.2015.01039 pmid: 26635856 |
[6] | Savadi S. Molecular regulation of seed development and strategies for engineering seed size in crop plants. Plant Growth Regul, 2018, 84: 401-422. |
[7] | Le B H, Cheng C, Bui A Q, Wagmaister J A, Henry K F, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, et al. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA, 2010, 107: 8063-8070. |
[8] | Xue L J, Zhang J J, Xue H W. Genome-wide analysis of the complex transcriptional networks of rice developing seeds. PLoS One, 2012, 7: e31081. |
[9] |
Kushwaha S K, Grimberg Å, Carlsson A S, Hofvander P. Charting oat (Avena sativa) embryo and endosperm transcription factor expression reveals differential expression of potential importance for seed development. Mol Genet Genomics, 2019, 294: 1183-1197.
doi: 10.1007/s00438-019-01571-x pmid: 31073872 |
[10] |
Basnet R K, Moreno-Pachon N, Lin K, Bucher J, Visser R G F, Maliepaard C, Bonnema G. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genomics, 2013, 14: 840.
doi: 10.1186/1471-2164-14-840 pmid: 24289287 |
[11] |
Kohl S, Hollmann J, Erban A, Kopka J, Riewe D, Weschke W, Weber H. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling. J Exp Bot, 2015, 66: 1397-1411.
doi: 10.1093/jxb/eru492 pmid: 25617470 |
[12] |
Dröge-Laser W, Snoek B L, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. Curr Opin Plant Biol, 2018, 45: 36-49.
doi: S1369-5266(17)30215-7 pmid: 29860175 |
[13] | Jiang N Q, Wang L N, Lan Y G, Liu H X, Zhang X Y, He W, Wu M, Yan H W, Xiang Y. Genome-wide identification of the Carya illinoinensis bZIP transcription factor and the potential function of S1-bZIPs in abiotic stresses. Tree Genet Genomes, 2023, 19: 47. |
[14] | Liang Y, Xia J Q, Jiang Y S, Bao Y Z, Chen H C, Wang D J, Zhang D, Yu J, Cang J. Genome-wide identification and analysis of bZIP gene family and resistance of TaABI5 (TabZIP96) under freezing stress in wheat (Triticum aestivum). Int J Mol Sci, 2022, 23: 2351. |
[15] | Huang L T, Liu C Y, Li L, Han X S, Chen H W, Jiao C H, Sha A H. Genome-wide identification of bZIP transcription factors in faba bean based on transcriptome analysis and investigation of their function in drought response. Plants (Basel), 2023, 12: 3041. |
[16] | Han P C, Yin T, Xi D X, Yang X Y, Zhang M J, Zhu L, Zhang H Y, Liu X Z. Genome-wide identification of the sweet orange bZIP gene family and analysis of their expression in response to infection by Penicillium digitatum. Horticulturae, 2023, 9: 393. |
[17] | Liu H T, Tang X, Zhang N, Li S G, Si H J. Role of bZIP transcription factors in plant salt stress. Int J Mol Sci, 2023, 24: 7893. |
[18] | Zhong X J, Feng X Q, Li Y L, Guzmán C, Lin N, Xu Q, Zhang Y Z, Tang H P, Qi P F, Deng M, et al. Genome-wide identification of bZIP transcription factor genes related to starch synthesis in barley (Hordeum vulgare L.). Genome, 2021, 64: 1067-1080. |
[19] | Niu B X, Deng H, Li T T, Sharma S, Yun Q B, Li Q R, Zhiguo E, Chen C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (Oryza sativa). J Integr Plant Biol, 2020, 62: 1983-1996. |
[20] | Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot, 2013, 64: 3453-3466. |
[21] | Dong Q, Xu Q Q, Kong J J, Peng X J, Zhou W, Chen L, Wu J D, Xiang Y, Jiang H Y, Cheng B J. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Sci, 2019, 283: 407-415. |
[22] | Chen J, Yi Q, Cao Y, Wei B, Zheng L J, Xiao Q L, Xie Y, Gu Y, Li Y P, Huang H H, et al. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters. J Exp Bot, 2016, 67: 1327-1338. |
[23] | Song Y H, Luo G B, Shen L S, Yu K, Yang W L, Li X, Sun J Z, Zhan K H, Cui D Q, Liu D C, et al. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat. New Phytol, 2020, 226: 1384-1398. |
[24] | Wang J, Wang Y, Wu X Y, Wang B G, Lu Z F, Zhong L P, Li G J, Wu X H. Insight into the bZIP gene family in Lagenaria siceraria: genome and transcriptome analysis to understand gene diversification in Cucurbitaceae and the roles of LsbZIP gene expression and function under cold stress. Front Plant Sci, 2023, 13: 1128007. |
[25] | Wang P, Li Y X, Zhang T T, Kang Y Q, Li W, Wang J, Yu W G, Zhou Y. Identification of the bZIP gene family and investigation of their response to drought stress in Dendrobium catenatum. Agronomy, 2023, 13: 236. |
[26] | Hwang I, Jung H J, Park J I, Yang T J, Nou I S. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response. Genomics, 2014, 104: 194-202. |
[27] | Cao L R, Lu X M, Zhang P Y, Wang G R, Wei L, Wang T C. Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses. Int J Mol Sci, 2019, 20: 4103. |
[28] |
Kreplak J, Madoui M A, Cápal P, Novák P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet, 2019, 51: 1411-1422.
doi: 10.1038/s41588-019-0480-1 pmid: 31477930 |
[29] | Punta M, Coggill P C, Eberhardt R Y, Mistry J, Tate J, Boursnell C, Pang N Z, Forslund K, Ceric G, Clements J, et al. The pfam protein families database. Nucleic Acids Res, 2012, 40: D290-D301. |
[30] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[31] | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. |
[32] | Sajjad M, Xue S D, Zhou M J, Li G H, Xu Y C, Liu L, Zhu J T, Meng Q T, Jin Q M, Du H, et al. Decoding comparative taste and nutrition regulation in Chinese cabbage via integrated metabolome and transcriptome analysis. Food Res Int, 2024, 195: 114943. |
[33] | Ye S H, Yang J, Huang Y Y, Liu J, Ma X W, Zhao L, Ma C Z, Tu J X, Shen J X, Fu T D, et al. Bulk segregant analysis-sequencing and RNA-Seq analyses reveal candidate genes associated with albino phenotype in Brassica napus. Front Plant Sci, 2022, 13: 994616. |
[34] | Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 47: W270-W275. |
[35] |
Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, Group B R. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106-111.
doi: 10.1016/s1360-1385(01)02223-3 pmid: 11906833 |
[36] | Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208. |
[37] | Ahmad B, Azeem F, Ali M A, Nawaz M A, Nadeem H, Abbas A, Batool R, Atif R M, Ijaz U, Nieves-Cordones M, et al. Genome-wide identification and expression analysis of two component system genes in Cicer arietinum. Genomics, 2020, 112: 1371-1383. |
[38] | Cheng Z J, Zhao X Y, Shao X X, Wang F, Zhou C, Liu Y G, Zhang Y, Zhang X S. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell, 2014, 26: 1053-1068. |
[39] |
Bensmihen S, Giraudat J, Parcy F. Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot, 2005, 56: 597-603.
doi: 10.1093/jxb/eri050 pmid: 15642716 |
[40] |
Kim I, Lee K R, Park M E, Kim H U. The seed-specific transcription factor DPBF2 modulates the fatty acid composition in seeds. Plant Direct, 2022, 6: e395.
doi: 10.1002/pld3.395 pmid: 35388372 |
[41] | Shi Q B, Xia Y, Xue N, Wang Q B, Tao Q, Li M J, Xu D, Wang X F, Kong F Y, Zhang H S, et al. Modulation of starch synthesis in Arabidopsis via phytochrome B-mediated light signal transduction. J Integr Plant Biol, 2024, 66: 973-985. |
[42] |
Sagor G H M, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, Muramoto K, Kusano T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol J, 2016, 14: 1116-1126.
doi: 10.1111/pbi.12480 pmid: 26402509 |
[43] | Jain P, Shah K, Rishi V. Potential in vitro and ex vivo targeting of bZIP53 involved in stress response and seed maturation in Arabidopsis thaliana by five designed peptide inhibitors. Biochim Biophys Acta Proteins Proteom, 2018, 1866: 1249-1259. |
[44] | Rahman S, Rehman A, Waqas M, Mubarik M S, Alwutayd K, AbdElgawad H, Jalal A, Azeem F, Rizwan M. Genome-wide exploration of bZIP transcription factors and their contribution to alkali stress response in Helianthus annuus. Plant Stress, 2023, 10: 100204. |
[45] | Gallego-Giraldo C, Hu J H, Urbez C, Gomez M D, Sun T P, Perez-Amador M A. Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. Plant J, 2014, 79: 1020-1032. |
[46] | Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell, 2011, 23: 69-80. |
[47] | Batista R A, Figueiredo D D, Santos-González J, Köhler C. Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev, 2019, 33: 466-476. |
[48] |
Wu C J, Shan W, Liang S M, Zhu L S, Guo Y F, Chen J Y, Lu W J, Li Q F, Su X G, Kuang J F. MaMPK2 enhances MabZIP93-mediated transcriptional activation of cell wall modifying genes during banana fruit ripening. Plant Mol Biol, 2019, 101: 113-127.
doi: 10.1007/s11103-019-00895-x pmid: 31300998 |
[49] |
Fatihi A, Boulard C, Bouyer D, Baud S, Dubreucq B, Lepiniec L. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. Plant Sci, 2016, 250: 198-204.
doi: S0168-9452(16)30132-7 pmid: 27457996 |
[50] |
Agarwal P, Kapoor S, Tyagi A K. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays, 2011, 33: 189-202.
doi: 10.1002/bies.201000107 pmid: 21319185 |
[51] | Tan H L, Yang X H, Zhang F X, Zheng X, Qu C M, Mu J Y, Fu F Y, Li J N, Guan R Z, Zhang H S, et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol, 2011, 156: 1577-1588. |
[52] | Kirkbride R C, Fischer R L, Harada J J. LEAFY COTYLEDON1, a key regulator of seed development, is expressed in vegetative and sexual propagules of Selaginella moellendorffii. PLoS One, 2013, 8: e67971. |
[53] | Lee S W, Choi D, Moon H, Kim S, Kang H, Paik I, Huq E, Kim D H. PHYTOCHROME-INTERACTING FACTORS are involved in starch degradation adjustment via inhibition of the carbon metabolic regulator QUA-QUINE STARCH in Arabidopsis. Plant J, 2023, 114: 110-123. |
[54] | Liu Z J, Zheng L M, Pu L, Ma X F, Wang X, Wu Y, Ming H N, Wang Q, Zhang G F. ENO2 affects the seed size and weight by adjusting cytokinin content and forming ENO2-bZIP75 complex in Arabidopsis thaliana. Front Plant Sci, 2020, 11: 574316. |
[55] | Jain P, Shah K, Sharma N, Kaur R, Singh J, Vinson C, Rishi V. A-ZIP53, a dominant negative reveals the molecular mechanism of heterodimerization between bZIP53, bZIP10 and bZIP25 involved in Arabidopsis seed maturation. Sci Rep, 2017, 7: 14343. |
[1] | 郭冰, 秦家范, 李娜, 宋梦瑶, 王黎明, 李君霞, 马小倩. 谷子SHMT基因家族全基因组鉴定与表达分析[J]. 作物学报, 2025, 51(3): 586-5897. |
[2] | 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236. |
[3] | 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309. |
[4] | 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947. |
[5] | 黄淑贤, 刘荣, 李冠, 疏琴, 徐斐, 宗绪晓, 杨涛. 通过CRISPR/Cas9建立豌豆基因组大片段敲除体系[J]. 作物学报, 2024, 50(7): 1658-1668. |
[6] | 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466. |
[7] | 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813. |
[8] | 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792. |
[9] | 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555. |
[10] | 戎宇轩, 惠留洋, 王沛琦, 孙思敏, 张献龙, 袁道军, 杨细燕. 陆地棉CLE基因家族的鉴定及GhCLE13参与调控棉花抗旱性的功能分析[J]. 作物学报, 2024, 50(12): 2925-2939. |
[11] | 王玲, 张艳萍, 齐燕妮, 汪磊, 李玉骁, 谭美莲, 汪魏. 胡麻P5CS基因家族进化模式分析及LusP5CS1基因耐旱能力验证[J]. 作物学报, 2024, 50(10): 2515-2527. |
[12] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[13] | 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881. |
[14] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[15] | 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位[J]. 作物学报, 2023, 49(4): 1006-1015. |
|