欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1850-1860.doi: 10.3724/SP.J.1006.2025.44174

• 耕作栽培·生理生化 • 上一篇    下一篇

镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响

李炳霖1,叶晓磊1,肖红1,肖国滨2,吕伟生2,刘君权3,任涛1,陆志峰1,*,鲁剑巍1   

  1. 1 华中农业大学资源与环境学院 / 农业农村部长江中下游耕地保育重点实验室, 湖北武汉 430070; 2 江西省红壤及种质资源研究所, 江西南昌 331717; 3 湖北省武穴市大法寺镇农业技术推广服务中心, 湖北武穴 435404
  • 收稿日期:2024-10-15 修回日期:2025-04-25 接受日期:2025-04-25 出版日期:2025-07-12 网络出版日期:2025-05-13
  • 基金资助:
    本研究由国家自然科学基金项目(32272820), 国家重点研发计划项目(2022YFD2301400)和财政部和农业农村部国家现代农业产业技术体系项目(CARS-12)资助。

Effects of magnesium fertilization rates on rapeseed yield, magnesium uptake, and yield loss caused by frost damage

LI Bing-Lin1,YE Xiao-Lei1,XIAO Hong1,XIAO Guo-Bin2,LYU Wei-Sheng2,LIU Jun-Quan3,REN Tao1,LU Zhi-Feng1,*,LU Jian-Wei1   

  1. 1 College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation in Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China; 2 Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 331717, Jiangxi, China; 3Agricultural Technology Extension Service Center of Dafasi Town, Wuxue City, Hubei Province, Wuxue 435404, Hubei, China
  • Received:2024-10-15 Revised:2025-04-25 Accepted:2025-04-25 Published:2025-07-12 Published online:2025-05-13
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32272820), the National Key Research and Development Program of China (2022YFD2301400), and the China Agriculture Research System of MOF and MARA (CARS-12).

摘要:

长江流域冬油菜主产区一半以上土壤缺镁,影响油菜生长发育和籽粒产量,并可能加剧冻害对油菜的危害。为探究科学施镁肥对提高油菜产量和抗寒性的影响,本研究基于2022/20232023/2024年在江西进贤及湖北武穴开展的不同镁肥用量(01545 kg hm?2 MgO)的田间试验,以2022/2023年作参考,对比了2023/2024年遭受低温冻害天气后的油菜籽产量及其构成因子、不同部位生物量、镁含量和地上部镁累积量等指标。结果表明,与不施镁肥处理相比,随着镁肥用量的增加,油菜籽产量呈上升趋势(增幅为6.2%~34.9%),同时施用镁肥降低了因低温冻害导致的产量损失(降幅为1.3%~8.9%)。与2022/2023季相比,2023/2024季油菜地上部生物量和镁累积量平均降低了38.0%~47.4%41.2%~50.6%,施镁肥有效缓解了低温冻害对植株生物量的不利影响(降幅为4.0%~9.4%),同时增加了油菜地上部的镁累积量(增幅为16.9%~46.0%)施用镁肥主要通过减少低温冻害对直播油菜收获密度和每角粒数的不利影响来提高籽粒产量,而对于移栽油菜而言,则通过有效保证植株的单株角果数来提升油菜产量,从而减轻低温冻害造成的影响。综上,油菜遭受冻害后其产量和镁累积量显著下降,施用镁肥可有效缓解低温冻害的不利影响,且当镁肥用量为45 kg hm?2 MgO时,油菜增产及对低温冻害的抵抗效果最佳

关键词: 镁肥用量, 冻害, 油菜产量, 产量构成, 镁累积量

Abstract:

Over 50% of soils in the primary winter rapeseed (Brassica napus L.) production areas of the Yangtze River Basin are deficient in magnesium (Mg), which not only limits crop productivity but also increases susceptibility to low-temperature frost damage. To assess the effectiveness of Mg fertilization (0, 15, and 45 kg hm?2 MgO) in enhancing yield and improving frost tolerance, a two-year field experiment was conducted across the 2022/2023 and 2023/2024 growing seasons in Jinxian (Jiangxi province) and Wuxue (Hubei province). The 2022/2023 season, which was free of frost, was compared with the frost-affected 2023/2024 season. Comprehensive measurements were taken, including yield components, biomass allocation, Mg concentration, and Mg accumulation. Results showed a significant positive relationship between Mg application and yield performance. Compared to the control (no Mg), Mg fertilization increased yield by 6.2% to 34.9%, and reduced frost-induced yield losses by 1.3% to 8.9%. Despite the frost in 2023/2024 causing average reductions of 38.0%–47.4% in shoot biomass and 41.2%–50.6% in total Mg uptake, Mg fertilization mitigated these effects by reducing biomass loss by 4.0%–9.4% and increasing aboveground Mg accumulation by 16.9%–46.0%. In direct-sown rapeseed, Mg application primarily enhanced seed yield by alleviating frost-induced reductions in plant density and seeds per pod. In contrast, for transplanted rapeseed, Mg fertilization preserved pod numbers per plant, thereby supporting both yield and frost tolerance. Overall, these findings demonstrate that while frost significantly reduces rapeseed yield and Mg uptake, Mg fertilization—particularly at 45 kg MgO hm?2—can effectively mitigate frost damage, resulting in improved yield and enhanced resilience.

Key words: magnesium fertilization rates, frost damage, oilseed rape yield, yield components, magnesium accumulation

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613–617 (in Chinese with English abstract).

[2] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1–8.
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2011, 13(1): 1–8 (in Chinese with English abstract).

[3] 董芹, 霍焱, 蒋骏, 裴善善, 吴建秋, 姚丽娜, 吴晶璐, 陈宏波. 油菜生育期气象指数等级及灾害预警指标研究. 江苏农业科学, 2015, 43(10): 84–90.
Dong Q, Huo Y, Jiang J, Pei S S, Wu J Q, Yao L N, Wu J L, Chen H B. Study on meteorological index grade and disaster early warning index of rape growth period. Jiangsu Agric Sci, 2015, 43(10): 8490 (in Chinese).

[4] 陆志峰, 任涛, 鲁剑巍. 我国冬油菜种植区土壤有效镁状况与油菜施镁效果. 华中农业大学学报, 2021, 40(2): 17–23.
Lu Z F, Ren T, Lu J W. Soil available magnesium status and effects of magnesium application on rapeseed yield in main producing area of China. J Huazhong Agric Univ, 2021, 40(2): 17–23 (in Chinese with English abstract).

[5] 李丹萍, 刘敦一, 张白鸽, 杨敏李文丽石孝均陈新平张跃强. 不同镁肥在中国南方三种缺镁土壤中的迁移和淋洗特征. 土壤学报, 2018, 55: 15131524.
Li D P, Liu D Y, Zhang B G, Yang M, Li W L, Shi X J, Chen X P, Zhang Y Q. Movement and leaching of magnesium fertilizers in three types of magnesium-deficient soils in south China relative to fertilizer type. Acta Pedol Sin, 2018, 55: 1513–1524 (in Chinese with English abstract).

[6] 白由路, 金继运, 杨俐苹. 我国土壤有效镁含量及分布状况与含镁肥料的应用前景研究. 土壤肥料, 2004, (2): 35.
Bai Y L, Jin J Y, Yang L P. Study on the content and distribution of soil available magnesium and foreground of magnesium fertilizer in China. Soils Fert, 2004, (2): 35 (in Chinese with English abstract).

[7] 王毓洪, 孟秋峰, 郁勤飞, 王洁, 张怀杰, 周洁萍. 油菜冻害机理与抗寒机制研究. 中国果菜, 2021, 41(11): 57–61.
Wang Y H, Meng Q F, Yu Q F, Wang J, Zhang H J, Zhou J P. Research on mechanism of freezing injury and low–temperature resistance of rapeseed. China Fruit Veg2021, 41(11): 5761 (in Chinese with English abstract).

[8] 董全, 陈博宇, 胡宁, 孔铃涵, 陈涛, 王佳, 张博. 20242月我国两次大范围雨雪冰冻天气对比. 应用气象学报, 2024, 35: 385–399.
Dong Q, Chen B Y, Hu N, Kong L H, Chen T, Wang J, Zhang B. Comparison of two ice and snow storm processes in China in February 2024. J Appl Meteorol Sci, 2024,35: 385–399 (in Chinese with English abstract).

[9] Ahmed N, Zhang B G, Bozdar B, Chachar S, Rai M, Li J, Li Y Q, Hayat F, Chachar Z, Tu P F. The power of magnesium: unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Front Plant Sci, 2023, 14: 1285512.

[10] Cakmak I, Kirkby E A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant, 2008, 133: 692–704.

[11] Rengel Z, Bose J, Chen Q, Tripathi B N. Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop Pasture Sci, 2015, 66: 1298.

[12] Chen Z C, Peng W T, Li J, Liao H. Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol, 2018, 74: 142–152.

[13] Rehman H U, Alharby H F, Alzahrani Y, Rady M M. Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progeny on sandy soil. Plant Physiol Biochem, 2018, 126: 97–105.

[14] Kleczkowski L A, Igamberdiev A U. Magnesium and cell energetics: At the junction of metabolism of adenylate and non-adenylate nucleotides. J Plant Physiol, 2023, 280: 153901.

[15] Senbayram M, Gransee A, Wahle V, Thiel H. Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop Pasture Sci, 2015, 66: 1219.

[16] 王芳, 刘鹏, 史锋, 朱靖文. 镁对大豆叶片细胞膜透性和保护酶活性的影响. 植物营养与肥料学报, 2005, 11: 659–664.
Wang F, Liu P, Shi F, Zhu J W. Influences of magnesium on cell membrane permeability and activities of protective enzymes of soybean leaves. Plant Nutr Fert Sci, 2005, 11: 659664 (in Chinese with English abstract).

[17] 谢小玉, 刘晓建, 刘海涛. 不同温度下镁胁迫对黄瓜光合特性和活性氧清除系统的影响. 植物营养与肥料学报, 2009, 15: 1231–1235.
Xie X Y, Liu X J, Liu H T. Effects of magnesium stress on photosynthetic character and active oxygen scavenging system in cucumber under different temperature. Plant Nutr Fert Sci, 2009, 15: 12311235 (in Chinese with English abstract).

[18] 张学昆, 张春雷, 廖星, 王汉中. 2008年长江流域油菜低温冻害调查分析. 中国油料作物学报, 2008, 30: 122–126.
Zhang X K, Zhang C L, Liao X, Wang H Z. Investigation on 2008’low temperature and freeze injure on winter rape along Yangtze River. Chin J Oil Crop Sci, 2008, 30: 122126 (in Chin ese with English abstract).

[19] 魏文慧, 孙万仓, 郭秀娟, 武军艳, 杨杰, 康艳丽, 刘红霞, 曾潮武, 蒲媛媛. 氮磷钾肥对西北寒旱区冬油菜越冬率、产量及经济性状的影响. 西北农业学报, 2009, 18: 122–125.
Wei W H, Sun W C, Guo X J, Wu J Y, Yang J, Kang Y L, Liu H X, Zeng C W, Pu Y Y. Effects of different proportions of N, P, and K on overwintering rates, yield and economical characters of winter rapeseed on northwest cold and drought region. Acta Agric Boreali-Occident Sin, 2009, 18: 122–125 (in Chinese with English abstract).

[20] 张政文, 胡乃娟, 顾泽海, 陶宝瑞, 尹思慧, 徐蒋来, 朱利群. 肥料运筹对苗期油菜抗冻性的影响. 南京农业大学学报, 2015, 38(1): 1–7.
Zhang Z W, Hu N J, Gu Z H, Tao B R, Yin S H, Xu J L, Zhu L Q. Effects of fertilizer application patterns on the seedling rape freezing resistance. J Nanjing Agric Univ, 2015, 38(1): 17 (in Chinese with English abstract).

[21] 耿国涛. 冬油菜土壤镁丰缺指标、镁肥增产提质效果与管理策略研究. 华中农业大学博士学位论文, 湖北武汉, 2023
Geng G T. Research on Soil Mg Criteria and Mg Fertilization Effect on Yield and Quality Improvement and Management Strategies. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract).

[22] 张晓红, 冯梁杰, 杨特武, 徐正华, 胡立勇. 冬季低温胁迫对油菜抗寒生理特性的影响. 植物生理学报, 2015, 51: 737–746.
Zhang X H, Feng L J, Yang T W, Xu Z H, Hu L Y. Effects of chilling stress on physiological characteristics of rapeseed seedlings in winter. Plant Physiol J, 2015, 51: 737–746 (in Chinese with English abstract).

[23] 米文博, 刘自刚, 徐春梅, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 低温胁迫下甘蓝型冬油菜蛋白质组学及光合特性分析. 分子植物育种, 2021, 19: 7222–7231.
Mi W B, Liu Z G, Xu C M, Zou Y, Xu M X, Zheng G Q, Cao X D, Fang X L. Proteomics and photosynthetic characteristics analysis of winter rap (Brassica napus L.) under low temperature stress. Mol Plant Breed, 2021, 19: 7222–7231 (in Chinese with English abstract).

[24] 吴昊, 邵明阳, 沈福生, 段沙丽. 低温冻害对江西油菜产量的影响及其变化特征研究. 江西农业学报, 2021, 33(11): 14–19.
Wu H, Shao M Y, Shen F S, Duan S L. Effects of low temperature and freezing injury on rapeseed yield and its variation characteristics in Jiangxi province. Acta Agric Jiangxi, 2021, 33(11): 14–19 (in Chinese with English abstract).

[25] 鲍士旦. 土壤农化分析(3). 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agrochemical Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000 (in Chinese).

[26] 李培武, 谢立华, 李光明, 张文, 杨湄, 陈洪. 双低油菜质量标准及其检测技术. 中国食物与营养, 2003, (6): 22–25.
Li P W, Xie L H, Li G M, Zhang W, Yang M, Chen H. Quality standards and detection techniques of double low Brassica campestris. Food Nutr China, 2003, (6): 22–25 (in Chinese).

[27] 叶晓磊, 耿国涛, 肖国滨, 吕伟生, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜籽产量及品质的影响. 作物学报, 2023, 49: 3063–3073.
Ye X L, Geng G T, Xiao G B, Lyu W S, Ren T, Lu Z F, Lu JW. Effects of magnesium application rate on yield and quality in oil seed rape (Brassica napus L.)Acta Agron Sin, 2023, 49: 30633073 (in Chinese with English abstract).

[28] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35–49.

[29] Zhang H P, Flottmann S. Source-sink manipulations indicate seed yield in canola is limited by source availability. Eur J Agron, 2018, 96: 70–76.

[30] Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol Plant, 2016, 38: 145.

[31] Sun K L, Hunt K, Hauser B A. Ovule abortion in Arabidopsis triggered by stress. Plant Physiol, 2004, 135: 2358–2367.

[32] 刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波. 直播冬油菜钙、镁、硫养分吸收规律. 中国油料作物学报, 2012, 34: 638–644.
Liu X W, Lu J W, Li X K, Bu R Y, Liu B. Absorption characteristics of calcium, magnesium and sulfur by winter rapeseed (Brassica napus) under direct-seeding cropping system. Chin J Oil Crop Sci, 2012, 34: 638–644 (in Chinese with English abstract).

[33] Ishfaq M, Wang Y Q, Yan M W, Wang Z, Wu L Q, Li C J, Li X X. Physiological essence of magnesium in plants and its widespread deficiency in the farming system of China. Front Plant Sci, 2022, 13: 802274.

[34] 陈苇, 俎峰, 罗延青, 赵凯琴, 张建昆, 张国建, 刘亚俊, 董云松, 李劲峰, 王劲乔. 影响甘蓝型油菜每角粒数因素分析. 中国油料作物学报, 2019, 41: 331−339.

Chen W, Zu F, Luo Y Q, Zhao K Q, Zhang J K, Zhang G J, Liu Y J, Dong Y S, Wang J Q. Factors affecting the number of single silique in Brassica napus. Oil Crop Sci, 2019, 41: 331−339 (in Chinese with English abstract).

[35] Hussain H A, Hussain S, Khaliq A, Ashraf U, Anjum S A, Men S N, Wang L C. Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci, 2018, 9: 393.

[36] Soualiou S, Duan F Y, Li X, Zhou W B. Crop production under cold stress: an understanding of plant responses, acclimation processes, and management strategies. Plant Physiol Biochem, 2022, 190: 47–61.

[37] 王鲲娇, 任涛, 陆志峰, 鲁剑巍. 不同镁供应浓度对油菜苗期生长和生理特性的影响. 中国农业科学, 2021, 54: 3198–3206.
Wang K J, Ren T, Lu Z F, Lu J W. Effects of different magnesium supplies on the growth and physiological characteristics of oilseed rape in seeding stage. Sci Agric Sin, 2021, 54: 3198–3206 (in Chinese with English abstract).

[38] 支蓉, 郑志海. 2021/2022年冬季中国气候异常特征及南方降水异常偏多成因分析. 气象, 2022, 48: 925–935.
Zhi R, Zheng Z H. Characteristics of climate anomalies over China in winter 2021/2022 and causes for precipitation anomalies over southern China. Meteorol Mon, 2022, 48: 925–935 (in Chinese with English abstract).

[39] 薛汉军. 油菜的冻害及防治措施. 陕西农业科学, 2011, 57: 270–272.
Xue H J. Freezing injury of rape and its control measures. Shaanxi J Agric Sci, 2011, 57: 270–272 (in Chinese).

[40] 李俊, 张春雷, 马霓, 李锋, 李光明. 栽培措施对冬油菜抗冻性和产量的影响. 江苏农业科学, 2010, 38(1): 95–97.
Li J, Zhang C L, Ma N, Li F, Li G M. Effects of cultivation method on freezing resistance and yielding capacity of winter rape. Jiangsu Agric Sci, 2010, 38(1): 95–97 (in Chinese).

[41] 徐正华, 张晓红, 陈秀斌, 郑红裕, 胡立勇. 不同栽培措施对油菜抗寒性的影响. 华中农业大学学报, 2012, 31: 661667.
Xu Z H, Zhang X H, Chen X B, Zheng H Y, Hu L Y. Effect of different cultivation measures on cold resistance of Brassica napus L. J Huazhong Agric Univ, 2012, 31: 661–667 (in Chinese with English abstract).

[42] 金姣姣, 侯献飞, 李强, 贾东海, 顾元国, 王轩, 曾瑞蒲媛媛, 武军艳, 方彦, . 影响北方白菜型冬油菜主要农艺性状变异的气象因子分析. 中国农业科技导报, 2020, 22(3): 140151.
Jin J J, Hou X F, Li Q, Jia D H, Gu Y G, Wang X, Zeng R, Pu Y Y, Wu J Y, Fang Y, et al. Analysis of meteorological factors influencing the variation of main agronomic traits of northern winter rapeseed (Brassica rape L.) J Agric Sci Technol, 2020, 22(3): 140151 (in Chinese with English abstract).

[43] Hermans C, Verbruggen N. Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot, 2005, 56: 21532161.

[44] Koch M, Winkelmann M K, Hasler M, Pawelzik E, Naumann M. Root growth in light of changing magnesium distribution and transport between source and sink tissues in potato (Solanum tuberosum L.). Sci Rep, 2020, 10: 8796.

[1] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[2] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[3] 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298.
[4] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[5] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[6] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[7] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[8] 叶晓磊, 耿国涛, 肖国滨, 吕伟生, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(11): 3063-3073.
[9] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[10] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析[J]. 作物学报, 2022, 48(12): 3144-3154.
[13] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[14] 金容,李钟,杨云,周芳,杜伦静,李小龙,孔凡磊,袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
[15] 丁永刚,李福建,王亚华,汤小庆,杜同庆,朱敏,李春燕,朱新开,丁锦峰,郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(4): 544-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .