欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1776-1786.doi: 10.3724/SP.J.1006.2024.33069

• 耕作栽培·生理生化 • 上一篇    下一篇

土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响

韩笑晨1(), 张贵芹1, 王亚辉1, 任昊1, 王洪章1, 刘国利2, 林佃旭3, 王子强4, 张吉旺1, 赵斌1, 任佰朝1, 刘鹏1,*()   

  1. 1黄淮海区域玉米技术创新中心 / 山东农业大学农学院, 山东泰安 271018
    2无棣县农业农村局, 山东无棣 251900
    3小泊头镇农业技术推广中心, 山东无棣 251900
    4滨州市农业科学研究院, 山东滨州 256603
  • 收稿日期:2023-11-23 接受日期:2024-01-30 出版日期:2024-07-12 网络出版日期:2024-02-20
  • 通讯作者: *刘鹏, E-mail: liup@sdau.edu.cn
  • 作者简介:E-mail: 17861505676@163.com
  • 基金资助:
    山东省重点研发计划项目(LJNY202103);山东省现代农业产业技术体系建设项目(SDAIT-02-08);山东省重大科技创新工程计划项目(2021CXGC010804-05);国家重点研发计划项目(2022YFD1201700)

Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land

HAN Xiao-Chen1(), ZHANG Gui-Qin1, WANG Ya-Hui1, REN Hao1, WANG Hong-Zhang1, LIU Guo-Li2, LIN Dian-Xu3, WANG Zi-Qiang4, ZHANG Ji-Wang1, ZHAO Bin1, REN Bao-Zhao1, LIU Peng1,*()   

  1. 1Huang-Huai-Hai Regional Maize Technology Innovation Center / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Agriculture and rural Bureau of Wudi County, Wudi 251900, Shandong, China
    3Agricultural Technology Promotion Center of Xiaobotou Town, Wudi County, Wudi 251900, Shandong, China
    4Academy of Agricultural Sciences of Binzhou, Binzhou 256603, Shandong, China
  • Received:2023-11-23 Accepted:2024-01-30 Published:2024-07-12 Published online:2024-02-20
  • Contact: *E-mail: liup@sdau.edu.cn
  • Supported by:
    Key Research and Development Project of Shandong Province(LJNY202103);Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08);Major Scientific and Technological Innovation Project in Shandong Province(2021CXGC010804-05);National Key Research and Development Program of China(2022YFD1201700)

摘要:

研究不同类型土壤调理剂对滨海盐碱地夏玉米田0~10 cm、10~20 cm、20~30 cm和30~40 cm土层土壤盐分含量、玉米根系形态和籽粒产量的影响, 为滨海盐碱地区夏玉米田适宜土壤调理剂的选用提供理论依据。试验于2022—2023年夏玉米季在山东省滨州市滨海盐碱型农田进行。采用完全随机区组设计, 以不施土壤调理剂为对照(CK), 设置3种不同类型的土壤调理剂, 分别为硅钙钾镁型调理剂(T1)、硅钙钾镁沸石型调理剂(T2)和硅钙钾镁聚丙烯酰胺(PAM)型调理剂(T3)。研究不同类型土壤调理剂对0~40 cm土层土壤盐分含量、玉米根系形态、叶面积指数、地上部干物质积累量、氮素积累量及籽粒产量的调控效应。结果表明, 与CK相比, 玉米拔节期(V6) T1、T3处理20~30 cm土层土壤总盐含量和Na+含量分别降低6.88%和23.00%、28.82%和17.44%, 土壤HCO3-含量分别升高10.97%、5.66%; 吐丝期(R1) T2处理10~40 cm土层土壤总盐含量、Na+含量分别平均降低9.07%、14.11%, 土壤HCO3-含量平均升高21.35%。土壤总盐含量降低有利于根系和地上部生长。与CK相比, 吐丝期T1、T2和T3处理0~40 cm土层玉米单株平均根系长度分别提高17.56%、74.83%和33.53%; T2和T3处理单株平均根系表面积分别提高33.35%和27.44%, 单株平均根系干重分别提高14.58%和11.93%。与CK相比, T1、T2和T3处理显著提高了玉米的叶面积指数, 植株地上部干物质积累量以及氮素积累量, 最终提高了夏玉米产量。2022年T1、T2和T3处理籽粒产量分别提高3.81%、8.22%和4.72%; 2023年分别提高8.08%、18.88%和15.95%。综合分析可知, 本试验条件下硅钙钾镁沸石型调理剂可有效降低玉米吐丝期土壤盐分含量, 减轻盐分胁迫, 促进玉米根系生长和对氮素的吸收, 增加地上部氮素积累量和干物质积累量, 显著增加籽粒产量, 是滨海盐碱地降低盐碱胁迫促进夏玉米生长的最佳土壤调理剂类型。

关键词: 滨海盐碱地, 土壤调理剂, 土壤盐分含量, 根系, 籽粒产量

Abstract:

In order to provide the theoretical basis for the selection of suitable soil conditioners for summer maize field in coastal saline-alkali land, we analyzed the effects of different types of soil conditioners on soil salt content of 0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm layers of summer maize fields in coastal saline-alkali land, root morphology, and grain yield of maize. In 2022-2023 maize growth seasons, the experiments were conducted in coastal saline-alkali summer field at Binzhou, Shandong province. The experiments were designed with the completely random block experimental design, with no soil conditioner as the control (CK), three different types of soil conditioners treatments: silica-calcium-potassium-magnesium conditioner (T1), silica-calcium-potassium -magnesium zeolite conditioner (T2), and silica-calcium-potassium-magnesium polymer (PAM) conditioner (T3) were set up for studying the effects of different types of soil conditioners on soil salt content of 0-40 cm layer, root morphology, leaf area index, biomass of shoot, nitrogen accumulation amount of shoot and grain yield in maize. The results indicated that, at V6 stage, compared with CK, the total salt content and Na+ content of 20-30 cm soil layer in T1 and T3 treatments decreased by 6.88% and 23.00%, 28.82%, and 17.44%, respectively, but the HCO3- content of 20-30 cm soil layer increased by 10.97% and 5.66%, respectively. At R1 stage, compared with CK, the total salt content and Na+ content of 10-40 cm soil layer in T2 treatment decreased by 9.07% and 14.11%, respectively. The HCO3- content of 10-40 cm soil layer increased by 21.35%. The decrease of soil total salt content was beneficial for the growth of root and shoot. Compared with CK, at R1 stage, the average root length per plant of 0-40 cm soil layer was increased by 17.56%, 74.83%, and 33.53% in T1, T2, and T3 treatments, respectively. The average root surface per plant was increased by 33.35% and 27.44% in T2 and T3 treatments, respectively. The average root dry weight per plant were increased by 14.58% and 11.93% in T2 and T3 treatments, respectively. Compared with CK, T1, T2, and T3 treatments significantly increased the leaf area index, shoot biomass, and nitrogen accumulation, thus increasing the grain yield of summer maize. Compared with CK, the grain yield of T1, T2, and T3 treatments were increased by 3.81%, 8.22%, and 4.72% in 2022, and by 8.08%, 18.88%, and 15.95% in 2023, respectively. In conclusion, in the conditions of our experiments, silica-calcium-potassium-magnesium zeolite conditioner effectively reduced soil salt content at R1 stage in maize, alleviated salt stress, promoted root and shoot growth, increased shoot nitrogen accumulation and biomass, and thus significantly increasing grain yield in maize, which was the best soil conditioner for improving summer maize growth in saline-alkali coastal land.

Key words: coastal saline-alkali land, soil conditioners, soil salt content, root, grain yield

表1

播种前土壤盐分离子含量"

土层
Soil depth
(cm)
土壤主要盐分离子含量 Soil salt ion content (mg kg-1) 土壤总盐含量
Soil total salt content
(g kg-1)
Na+ K+ Ca2+ Mg2+ Cl- HCO3- SO42-
0-10 297.40 9.27 95.33 26.23 140.38 533.75 244.00 1.35
10-20 285.13 5.79 75.33 22.37 148.89 564.25 244.80 1.37
20-30 315.89 3.21 84.00 15.86 116.99 569.33 264.00 1.38
30-40 329.10 8.36 61.33 20.33 104.22 630.33 239.20 1.39

图1

夏玉米生育期日平均气温和降雨量"

图2

土壤调理剂对玉米不同生育时期的0~40 cm土层土壤总盐含量的影响(2022年) 不同小写字母表示同一年份处理间在0.05概率水平差异显著。CK: 不施用调理剂; T1: 硅钙钾镁调理剂; T2: 硅钙钾镁沸石型调理剂; T3: 硅钙钾镁PAM型调理剂。"

图3

土壤调理剂对玉米不同生育时期0~40 cm土层土壤Na+含量的影响(2022年) 不同小写字母表示同一年份处理间在0.05概率水平差异显著。CK: 不施用调理剂; T1: 硅钙钾镁调理剂; T2: 硅钙钾镁沸石型调理剂; T3: 硅钙钾镁PAM型调理剂。"

图4

土壤调理剂对玉米不同生育时期0~40 cm土层土壤HCO3-含量的影响(2022年) 不同小写字母表示同一年份处理间在0.05概率水平差异显著。CK: 不施用调理剂; T1: 硅钙钾镁调理剂; T2: 硅钙钾镁沸石型调理剂; T3: 硅钙钾镁PAM型调理剂。"

图5

土壤调理剂对玉米各生育时期叶面积指数的影响 不同小写字母表示同一年份处理间在0.05概率水平差异显著。CK: 不施用调理剂; T1: 硅钙钾镁调理剂; T2: 硅钙钾镁沸石型调理剂; T3: 硅钙钾镁PAM型调理剂。"

图6

土壤调理剂对玉米各生育时期地上部干物质积累量的影响 不同小写字母表示同一年份处理间在0.05概率水平差异显著。CK: 不施用调理剂; T1: 硅钙钾镁调理剂; T2: 硅钙钾镁沸石型调理剂; T3: 硅钙钾镁PAM型调理剂。"

图7

土壤调理剂对玉米吐丝期0~40 cm土层单株平均根系长度、根系表面积、根系体积和根系干重的影响(2022年) 不同小写字母表示同一年份处理间在0.05概率水平差异显著。CK: 不施用调理剂; T1: 硅钙钾镁调理剂; T2: 硅钙钾镁沸石型调理剂; T3: 硅钙钾镁PAM型调理剂。"

表2

土壤调理剂对玉米不同生育时期地上部氮素积累量的影响(2022年)"

处理
Treatment
氮素积累量Nitrogen accumulation (kg hm-2)
V6 R1 R3 R6
CK 9.38 b 84.67 b 143.78 c 205.52 b
T1 9.83 b 110.41 a 146.17 bc 227.98 a
T2 11.27 a 110.96 a 178.66 a 239.71 a
T3 12.07 a 117.61 a 160.75 b 227.19 a

表3

土壤调理剂对玉米籽粒产量及产量构成因素的影响"

年份
Year
处理
Treatment
公顷穗数
Actual ears
(×104 ear hm-2)
穗粒数
Grains per ear
千粒重
1000-grain weight
(g)
籽粒产量
Grain yield
(t hm-2)
2022 CK 5.74 a 582.97 c 332.49 a 11.13 c
T1 5.70 a 599.57 b 337.83 a 11.55 b
T2 5.74 a 628.93 a 333.55 a 12.04 a
T3 5.74 a 602.27 b 337.06 a 11.65 b
2023 CK 6.15 a 524.71 c 293.95 a 9.48 c
T1 6.19 a 553.16 b 299.37 a 10.24 b
T2 6.15 a 599.33 a 305.78 a 11.27 a
T3 6.15 a 569.56 b 313.87 a 10.99 a
[1] 李金彪, 陈金林, 刘广明, 杨劲松. 滨海盐碱地绿化理论技术研究进展. 土壤通报, 2014, 45: 246-251.
Li J B, Chen J L, Liu G M, Yang J S. Progress of greening theory and technology for coastal saline land. Chin J Soil Sci, 2014, 45: 246-251 (in Chinese with English abstract).
[2] 崔恒, 张久东, 宝林, 韩杰荣, 车宗贤, 包兴国, 杨蕊菊. 不同用量有机酸土壤调理剂对土壤养分和作物生长的影响. 应用生态学报, 2021, 32: 4411-4418.
doi: 10.13287/j.1001-9332.202112.016
Cui H, Zhang J D, Bao L, Han J R, Che Z X, Bao X G, Yang R J. Effects of different amounts of organic acid soil conditioners on soil nutrients and crop growth. Chin J Appl Ecol, 2021, 32: 4411-4418 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202112.016
[3] 高惠敏, 王相平, 屈忠义, 杨劲松, 姚荣江. 不同改良剂对河套灌区土壤盐碱指标及作物产量的影响研究. 土壤通报, 2020, 51: 1172-1179.
Gao H M, Wang X P, Qu Z Y, Yang J S, Yao R J. Effects of different soil amendments on salinity index and crop yield in the irrigation area of Hetao. Chin J Soil Sci, 2020, 51: 1172-1179 (in Chinese with English abstract).
[4] 王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673-684.
Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on sustainable utilization of salt-affected land. Acta Gepgr Sin, 2011, 66: 673-684 (in Chinese with English abstract).
[5] Zhao Y G, Wang S J, Li Y, Liu J, Zhuo Y Q, Zhang W K, Wang J, Xu L Z. Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China. Agric Ecosyst Environ, 2018, 261: 115-124.
[6] 陈江, 陈霄燕, 戴慧敏, 刘国栋, 刘凯, 房娜娜, 毛朝霞. 沸石矿物在东北地区黑土地盐碱化土壤改良中的应用. 地质与资源, 2020, 29: 621-626.
Chen J, Chen X Y, Dai H M, Liu G D, Liu K, Fang N N, Mao Z X. Application of zeolite in improvement of saline-alkali soil in northeast China. Geol Res, 2020, 29: 621-626 (in Chinese with English abstract).
[7] 解雪峰, 濮励杰, 沈洪运, 吴涛, 朱明, 黄思华. 滨海重度盐碱地改良土壤盐渍化动态特征及预测. 土壤学报, 2022, 59: 1504-1516.
Xie X F, Pu L J, Shen H Y, Wu T, Zhu M, Huang S H. Dynamics and prediction of soil salinization parameters under the amelioration of heavy coastal saline-alkali land. Acta Pedol Sini, 2022, 59: 1504-1516 (in Chinese with English abstract).
[8] Xie X F, Pu L J, Shen H Y, Wang X H, Zhu M, Ge Y, Sun L C. Effects of soil reclamation on the oat cultivation in the newly reclaimed coastal land, eastern China. Ecol Eng, 2019, 129: 115-122.
[9] Ali S, Rizwan M, Qayyum M F, Ok Y S, Ibrahim M, Riaz M, Arif M S, Hafeez F, Al-Wabel M L, Shahzad A N. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res, 2017, 24: 12700-12712.
[10] 王学成, 刘冉, 杨莹攀, 孙博瑞, 王海瑞, 姚宝林. 棉花秸秆不同埋深对土壤水盐分布及棉花根系构型的影响. 节水灌溉, 2021, (9): 77-82.
Wang X C, Liu R, Yang Y P, Sun B R, Wang H R, Yao B L. Effects of different burial depth of cotton straw on soil water and salt distribution and cotton root architecture. Water Saving Irrig, 2021, (9): 77-82 (in Chinese with English abstract).
[11] Ning S R, Shi J C, Zuo Q, Wang S, Ben-Gal A. Generalization of the root length density distribution of cotton under film mulched drip irrigation. Field Crops Res, 2015, 177: 125-136.
[12] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
[13] Katerji N, Hoorn J W V, Hamdy A, Mastrorilli M. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric Water Manag, 2003, 62: 37-66.
[14] 张玉芹, 杨恒山, 张瑞富, 李从锋, 提俊阳, 葛选良, 杨镜宏. 浅埋滴灌下水氮运筹对春玉米根系衰减特性及产量的影响. 作物学报, 2023, 49: 3074-3089.
doi: 10.3724/SP.J.1006.2023.33009
Zhang Y Q, Yang H S, Zhang R F, Li C F, Ti J Y, Ge X L, Yang Ji H. Effects of water and nitrogen application on root attenuation characteristics and yield of spring maize under shallow buried drip irrigation. Acta Agron Sin, 2023, 49: 3074-3089 (in Chinese with English abstract).
[15] 史晓龙, 郭佩, 任婧瑶, 张鹤, 董奇琦, 赵新华, 周宇飞, 张正, 万书波, 于海秋. 基于花生//高粱间作模式的花生盐胁迫耐受性效应研究. 中国农业科学, 2022, 55: 2927-2937.
doi: 10.3864/j.issn.0578-1752.2022.15.005
Shi X L, Guo P, Ren J Y, Zhang H, Dong Q Q, Zhao X H, Zhou Y F, Zhang Z, Wan S B, Yu H Q. A salt stress tolerance effect study in peanut based on peanut//sorghum intercropping system. Sci Agric Sin, 2022, 55: 2927-2937 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.15.005
[16] 白非, 白桂萍, 王春云, 李真, 龚德平, 黄威, 程雨贵, 汪波, 王晶, 徐正华, 蒯婕, 周广生. 翻耕深度对遮阴油菜根系生长和养分吸收利用的影响. 中国农业科学, 2022, 55: 2726-2739.
doi: 10.3864/j.issn.0578-1752.2022.14.004
Bai F, Bai G P, Wang C Y, Li Z, Gong D P, Huang W, Cheng Y G, Wang B, Wang J, Xu Z H, Kuai J, Zhou G S. Effects of tillage depth and shading on root growth and nutrient utilization of rapeseed. Sci Agric Sin, 2022, 55: 2726-2739 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.14.004
[17] 房孟颖, 卢霖, 王庆燕, 董学瑞, 闫鹏, 董志强. 乙矮合剂对不同施氮量夏玉米根系形态构建和产量的影响. 中国农业科学, 2022, 55: 4808-4822.
doi: 10.3864/j.issn.0578-1752.2022.24.003
Fang M Y, Lu L, Wang Q Y, Dong X R, Yan P, Dong Z Q. Effects of ethylene-chlormequat-potassium on root morphological construction and yield of summer maize with different nitrogen application rates. Sci Agric Sin, 2022, 55: 4808-4822 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.24.003
[18] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. pp 192-195.
Bao S D. Soil and Agricultural Chemistry Analysis. 3rd edn. Beijing: China Agriculture Press, 2000. pp 192-195 (in Chinese).
[19] 吴雨晴, 郑春莲, 李科江, 党红凯, 李全起, 李树宁, 张俊鹏. 咸水灌溉对麦-玉两熟制农田土壤水稳性团聚体的影响. 水土保持学报, 2021, 35: 288-294.
Wu Y Q, Zheng C L, Li K J, Dang H K, Li Q Q, Li S N, Zhang J P. Effect of saline water irrigation on soil water-stable aggregates in wheat-maize crop double cropping system. J Soil Water Conserv, 2021, 35: 288-294 (in Chinese with English abstract).
[20] 杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59: 10-27.
Yang J S, Yao R J, Wang X P, Xie W P, Zhang X, Zhu W, Zhang L, Sun R J. Research on salt-affected soils in China: history, status quo and prospect. Acta Pedolog Sin, 2022, 59: 10-27 (in Chinese with English abstract).
[21] 杨思存, 逄焕成, 王成宝, 李玉义, 霍琳, 姜万礼. 基于典范对应分析的甘肃引黄灌区土壤盐渍化特征研究. 中国农业科学, 2014, 47: 100-110.
doi: 10.3864/j.issn.0578-1752.2014.01.011
Yang S C, Pang H C, Wang C B, Li Y Y, Huo L, Jiang W L. Characterization of soil salinization based on canonical correspondence analysis method in Gansu Yellow River irrigation district of northwest China. Sci Agric Sin, 2014, 47: 100-110 (in Chinese with English abstract).
[22] Turner R C, Clark J S. The pH of calcareous soil. Soil Sci, 1956, 82: 337-342.
[23] Blair G J, Miller M H, Mitchell W A. Nitrate and ammonium as sources of nitrogen for corn and their influence on the uptake of other ions. Agron J, 1970, 62: 520-532.
[24] Liu R X, Zhou Z G, Guo W Q, Chen B L, Oosterhuis D M. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants. Agric Water Manag, 2008, 95: 1261-1270.
[25] 漆栋良, 吴雪, 胡田田. 施氮方式对玉米根系生长、产量和氮素利用的影响. 中国农业科学, 2014, 47: 2804-2813.
doi: 10.3864/j.issn.0578-1752.2014.14.011
Qi D L, Wu X, Hu T T. Effects of nitrogen supply methods on root growth, yield and nitrogen use of maize. Sci Agric Sin, 2014, 47: 2804-2813 (in Chinese with English abstract).
[26] Verbon E H, Liberman L M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci, 2016, 21: 218-229.
doi: S1360-1385(16)00028-5 pmid: 26875056
[27] Su S H, Gibbs N M, Jancewicz A L, Masson P H. Molecular mechanisms of root gravitropism. Curr Biol, 2017, 27: 964-972.
doi: 10.1016/j.cub.2017.07.015
[28] Jin K, White P J, Whalley W R, Shen J B, Shi L. Shaping an optimal soil by root-soil interaction. Trends Plant Sci, 2017, 22: 823-829.
doi: S1360-1385(17)30158-9 pmid: 28803694
[29] Chen F Q, Fang P, Peng Y L, Zeng W J, Zhao Xi Q, Ding Y F, Zhuang Z L, Gao Q H, Ren B. Comparative proteomics of salt-tolerant and salt-sensitive maize inbred lines to reveal the molecular mechanism of salt tolerance. Int J Mol Sci, 2019, 20: 4725-4725.
[30] El-Esawi M A, Alsahli I A, Alamri S A, Ali H M, Alayafi A A. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Bioch, 2018, 132: 375-384.
[31] Zhao Y, Xing L, Wang X G, Hou Y J, Gao J H, Wang P C, Duan C G, Zhu X H, Zhu J K. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal, 2014, 7: ra53.
[32] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 毕文波. 超高产春玉米的根系特征. 作物学报, 2011, 37: 735-743.
doi: 10.3724/SP.J.1006.2011.00735
Zhang Y Q, Yang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Bi W B. Root characteristics of super high-yield spring maize. Acta Agron Sin, 2011, 37: 735-743 (in Chinese with English abstract).
[33] 陈晓影, 刘鹏, 程乙, 董树亭, 张吉旺, 赵斌, 任佰朝. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响. 作物学报, 2019, 45: 1565-1575.
doi: 10.3724/SP.J.1006.2019.93005
Chen X Y, Liu P, Cheng Y, Dong S T, Zhang J W, Zhao B, Ren B Z. Effects of phosphorus fertilizer application depths on root distribution and phosphorus uptake and utilization efficiencies of summer maize under subsoiling tillage. Acta Agron Sin, 2019, 45: 1565-1575 (in Chinese with English abstract).
[34] Xiao Y S, Peng Y, Peng F T, Zhang Y F, Yu W, Sun M X, Gao X L. Effects of concentrated application of soil conditioners on soil-air permeability and absorption of nitrogen by young peach trees. Soil Sci Plant Nutr, 2018, 64: 423-432.
[35] 李小凡, 邵靖宜, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响. 中国农业科学, 2022, 55: 3516-3529.
doi: 10.3864/j.issn.0578-1752.2022.18.004
Li X F, Shao J Y, Yu W Z, Liu P, Zhao B, Zhang J W, Ren B Z. Combined effects of high temperature and drought on yield and photosynthetic characteristics of summer maize. Sci Agric Sin, 2022, 55: 3516-3529 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.18.004
[36] 王玉珑, 于爱忠, 吕汉强, 王琦明, 苏向向, 柴强. 绿洲灌区小麦秸秆还田与耕作措施对玉米产量的影响. 作物学报, 2022, 48: 2671-2679.
doi: 10.3724/SP.J.1006.2022.13058
Wang Y L, Yu A Z, Lyu H Q, Wang Q M, Su X X, Chai Q. Effects of wheat straw returning and tillage practices on corn yield in oasis irrigation area. Acta Agron Sin, 2022, 48: 2671-2679 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13058
[37] 杜祥备, 王家宝, 刘小平, 夏家平, 韩杨. 减氮运筹对甘薯光合作用和叶绿素荧光特性的影响. 应用生态学报, 2019, 30: 1253-1260.
doi: 10.13287/j.1001-9332.201904.012
Du X B, Wang J B, Liu X P, Xia J P, Han Y. Effects of nitrogen fertilizer reduction management on photosynthesis and chlorophyll fluorescence characteristics of sweetpotato. Chin J Appl Ecol, 2019, 30: 1253-1260 (in Chinese with English abstract).
[38] Watt M S, Clinton P W, Whitehead E, Richardson B, Mason E G, Leckie A C. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland-site. For Ecol Manag, 2003, 184: 93-104.
[39] 辛承松, 董合忠, 唐薇, 张冬梅, 罗振, 李维江. 滨海盐渍土抗虫棉养分吸收和干物质积累特点. 作物学报, 2008, 34: 2033-2040.
doi: 10.3724/SP.J.1006.2008.02033
Xin C S, Dong H Z, Tang W, Zhang D M, Luo Z, Li W J. Characteristics of nutrient assimilation and dry matter accumulation of Bt cotton (Gossypium hirsutum L.) in coastal saline soil. Acta Agron Sin, 2008, 34: 2033-2040 (in Chinese with English abstract).
[40] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性. 作物学报, 2023, 49: 1339-1349.
doi: 10.3724/SP.J.1006.2023.22031
Wei H M, Tao W K, Zhou Y, Yan F Y, Li W W, Ding Y F, Liu Z H, Li G H. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance. Acta Agron Sin, 2023, 49: 1339-1349 (in Chinese with English abstract).
[41] 宋秀华, 王秀峰, 魏珉, 臧金波. 沸石添加对NaCl胁迫下黄瓜幼苗生长及离子含量的影响. 植物营养与肥料学报, 2005, 11: 259-263.
Song X H, Wang X F, Wei M, Zang J B. Effects of zeolite on growth and ionic contents of cucumber seedlings under NaCl stress. Plant Nutr Fert Sci, 2005, 11: 259-263 (in Chinese with English abstract).
[42] 王韵弘, 张济世, 王红叶, 刘秀萍, 崔振岭, 苗琪. 提高滨海盐渍地区春玉米产量及改善土壤盐碱特性的综合管理措施. 植物营养与肥料学报, 2021, 27: 2045-2053.
Wang Y H, Zhang J S, Wang H Y, Liu X P, Cui Z L, Miao Q. Improving soil properties and maize yield by integrating soil and crop management measures in coastal saline area. J Plant Nutr Fert, 2021, 27: 2045-2053 (in Chinese with English abstract).
[43] Wu Y, Li F, Zheng H C, Hong M, Hu Y C, Zhao B, De H S. Effects of three types of soil amendments on yield and soil nitrogen balance of maize-wheat rotation system in the Hetao irrigation area. J Arid Land, 2019, 11: 904-915.
[1] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[2] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[3] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[4] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[5] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[6] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[7] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[8] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[9] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[10] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424.
[11] 徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响[J]. 作物学报, 2024, 50(2): 425-439.
[12] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[13] 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208.
[14] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[15] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[4] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[5] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[6] 王才斌;吴正锋;成波;郑亚萍;万书波;郭峰;陈殿绪. 连作对花生光合特性和活性氧代谢的影响[J]. 作物学报, 2007, 33(08): 1304 -1309 .
[7] 徐雁鸿;关建平;宗绪晓. 豇豆种质资源SSR标记遗传多样性分析[J]. 作物学报, 2007, 33(07): 1206 -1209 .
[8] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .
[9] 王丽宏;曾昭海;杨光立;李会彬;肖小平;张帆;胡跃高. 六种稻田土壤冬季种植黑麦草功能效应研究[J]. 作物学报, 2007, 33(12): 1972 -1976 .
[10] . 小麦穗和芒表面积的估测[J]. 作物学报, 1985, 11(02): 138 .