欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2458-2467.doi: 10.3724/SP.J.1006.2024.44017

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过表达野生大豆耐盐碱基因GsGSTU13提高了水稻苗期耐盐碱性

李宛鸿(), 胡冰霜, 孙晓丽, 才晓溪*(), 孙明哲*()   

  1. 黑龙江八一农垦大学农学院 / 作物逆境分子生物学实验室, 黑龙江大庆 163316
  • 收稿日期:2024-01-28 接受日期:2024-06-20 出版日期:2024-10-12 网络出版日期:2024-07-11
  • 通讯作者: *孙明哲, E-mail: sunmingzhe@byau.edu.cn;才晓溪, E-mail: 18746616279@163.com
  • 作者简介:E-mail: wh10161122@163.com; alisa961102@gmail.com
  • 基金资助:
    国家自然科学基金项目(U20A2025);国家自然科学基金项目(31971826);黑龙江省自然科学基金项目(YQ2023C035)

Overexpression of wild soybean salt-alkali tolerance gene GsGSTU13 increases salt-alkaline tolerance in rice seedlings

LI Wan-Hong(), HU Bing-Shuang, SUN Xiao-Li, CAI Xiao-Xi*(), SUN Ming-Zhe*()   

  1. College of Agriculture, Heilongjiang Bayi Agriculture University / Crop Stress Molecular Biology Laboratory, Daqing 163316, Heilongjiang, China
  • Received:2024-01-28 Accepted:2024-06-20 Published:2024-10-12 Published online:2024-07-11
  • Contact: *E-mail: sunmingzhe@byau.edu.cn;E-mail: 18746616279@163.com
  • Supported by:
    National Natural Science Foundation of China(U20A2025);National Natural Science Foundation of China(31971826);Natural Science Foundation of Heilongjiang Province(YQ2023C035)

摘要:

谷胱甘肽S-转移酶(glutathione S-transferases, GSTs)是一类高度保守的功能酶, 在植物对非生物胁迫应答过程中发挥重要作用。本研究通过生物信息学分析发现, 野生大豆GsGSTU13与水稻GSTU17蛋白序列相似性最高, 均含有高度保守的结构域。为探究GsGSTU13基因对水稻耐盐碱性的影响, 通过遗传转化、PCR、RT-PCR和GST活性检测, 获得了2个GsGSTU13过表达转基因水稻纯合株系。苗期耐盐碱性分析显示, 200 mmol L-1 NaHCO3处理下, GsGSTU13转基因株系的活性氧积累显著低于野生型, 而存活率、相对含水量、超氧化物歧化酶、过氧化物酶、过氧化氢酶和GST活性均显著高于野生型。综上, 在水稻中过表达GsGSTU13基因增强了活性氧清除能力, 提高了转基因水稻耐盐碱性, 为耐盐碱水稻新种质创制提供了参考。

关键词: 水稻, 野生大豆, 耐盐碱性, 谷胱甘肽S-转移酶, GsGSTU13

Abstract:

Glutathione S-transferases (GSTs) are a class of highly conserved enzymes that play crucial roles in plant responses to environmental stresses. Bioinformatic analysis has revealed that Glycine soja GsGSTU13, which positively regulates salt-alkaline tolerance, shares the highest sequence identity with the OsGSTU17 protein. To investigate the potential contribution of GsGSTU13 to rice salt-alkaline tolerance, we transformed GsGSTU13 into rice and obtained two homozygous transgenic lines with significantly elevated GST activity. Phenotypic assays showed that after treatment with 200 mmol L-1 NaHCO3, the accumulation of reactive oxygen species was significantly lower in GsGSTU13 transgenic lines compared to wild-type. Additionally, the survival rates, relative water contents, and the activities of superoxide dismutases, peroxidases, catalases, and GSTs were significantly higher in GsGSTU13 transgenic lines than in the wild-type. In summary, overexpression of GsGSTU13 in rice enhanced salt-alkaline tolerance by promoting ROS scavenging, which could facilitate the breeding of new rice cultivars with improved tolerance to salt-alkaline stress.

Key words: rice, wild soybean, salt-alkaline tolerance, glutathione S-transferases, GsGSTU13

表1

本研究使用的引物"

引物名称
Primer name
序列
Sequence (5°-3°)
试验用途
Experimental purpose
pCAMBIA130035Su-GsGSTU13-F GGCTTAAUGGCTTCAAATCATGAAG 植物超量表达载体构建
Generation of plant expression construct
pCAMBIA130035Su-GsGSTU13-R GGTTTAAUCTACTTTTTAGCAGAAGCTTG
pCAMBIA35S-F ATAAGGAAGTTCATTTCATTTGGA 遗传转化抗性苗PCR检测
PCR identification of transgenic rice
GsGSTU13-PCR-R TCCTCCACTGCTTTCTCACG
GsGSTU13-RT-PCR-F TGCCTCGAGACCCTTATGAGA 遗传转化抗性苗RT-PCR检测
RT-PCR identification of transgenic rice
GsGSTU13-RT-PCR-R CCTCCTTGATCACAGGGTGATTG
OsGSTU17-qRT-F CTCCCAACTCCCAACTTCCC OsGSTU17基因表达Real-time PCR分析
Real-time PCR analysis of OsGSTU17 gene expression
OsGSTU17-qRT-R ACATGCCGAACACCTTCACT

图1

野生大豆GSTU13与水稻GSTU蛋白进化关系分析 A: GSTU13与水稻GSTU蛋白进化关系(红色五角星标记为GsGSTU13, 蓝色圆点表示有功能报道的OsGSTUs基因)。B: GsGSTU13与同源OsGSTU蛋白序列相似性热图。"

图2

GsGSTU13与水稻同源OsGSTU蛋白序列比对"

图3

pCAMBIA130035Su-GsGSTU13植物表达载体构建 A: pCAMBIA130035Su-GsGSTU13载体图谱示意图; B: GsGSTU13基因CDS区PCR产物(M: DNA marker 2K); C: pCAMBIA130035Su- GsGSTU13菌落PCR鉴定; M: DNA marker 2K; +: 阳性质粒对照(pGEM-T-GSTU13); -: 阴性H2O对照; 1~4: GsGSTU13单菌落。"

图4

转GsGSTU13基因水稻株系的分子鉴定 A: 转GsGSTU13基因水稻抗性苗PCR检测(M: DNA marker 2K Plus; +: 质粒阳性对照; -: 阴性H2O对照; WT: 野生型对照; #1~#9: 转GsGSTU13基因水稻抗性苗); B: GsGSTU13转基因水稻株系RT-PCR检测(WT: 野生型对照; #1和#2: GsGSTU13转基因水稻株系; OsElf1-α作为内参基因); C: GsGSTU13转基因水稻株系GST活性检测; 差异显著性分析采用t测验方法, *: P < 0.05, n = 20。D: GsGSTU13转基因水稻株系中OsGSTU17基因表达分析; ns: 无显著性差异, n = 3。"

图5

GsGSTU13转基因水稻苗期耐盐碱性分析 A: NaHCO3处理前后各株系生长状态; B: 水稻幼苗存活率; C: 水稻幼苗相对含水量; 差异显著性分析采用t测验方法, *: P < 0.05, **: P < 0.01, n = 20。"

图6

GsGSTU13转基因水稻盐碱胁迫下ROS积累检测 A: NBT染色; B: DAB染色。图中标尺为1 cm。"

图7

盐碱胁迫处理下GsGSTU13转基因水稻抗氧化物酶检测 A: 谷胱甘肽S-转移酶(GST)活性; B: 超氧化物歧化酶(SOD)活性; C: 过氧化物酶(POD)活性; D: 过氧化氢酶(CAT)活性。差异显著性分析采用Student’s t测验方法, *: P < 0.05, **: P < 0.01, n = 20。"

[1] 王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的响应及耐盐机理研究进展. 中国水稻科学, 2022, 36: 105-117.
doi: 10.16819/j.1001-7216.2022.210609
Wang Y, Zhang R, Liu Y H, Li R K, Ge J F, Deng S W, Zhang X B, Chen Y L, Wei H H, Dai Q G. Research progress on the response and salt tolerance mechanism of rice to salt stress. Chin J Rice Sci, 2022, 36: 105-117 (in Chinese with English abstract).
[2] 邵玺文, 冉成, 金峰, 郭丽颖, 耿艳秋. 松嫩平原苏打盐碱地水稻栽培技术研究进展与展望. 吉林农业大学学报, 2018, 40: 379-382.
Shao X W, Ran C, Jin F, Guo L Y, Geng Y Q. Research progress and outlook on rice cultivation techniques in soda saline alkali land of Songnen Plain. Jilin Agric Sci, 2018, 40: 379-382 (in Chinese with English abstract).
[3] 祁栋灵, 郭桂珍, 李明哲, 曹桂兰, 张俊国, 周庆阳, 张三元, 徐锡哲, 韩龙植. 水稻耐盐碱性生理和遗传研究进展. 植物遗传资源学报, 2007, 8: 486-493.
Qi D G, Guo G Z, Li M Z, Cao G L, Zhang J G, Zhou Q Y, Zhang S Y, Xu X Z, Han L Z. Progress in physiological and genetic research on salt alkali tolerance in rice. J Plant Genet Resour, 2007, 8: 486-493 (in Chinese with English abstract).
[4] Cai X, Jia B, Sun M, Sun X. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. Front Plant Sci, 2022, 13: 1002302.
[5] Nakka S, Godar A S, Thompson C R, Peterson D E, Jugulam M. Rapid detoxification via glutathione S-transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri). Pest Manag Sci, 2017, 73: 2236-2243.
[6] Duncan V, Smith R, Allen E, Allen R. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol, 1997, 15: 988-991.
doi: 10.1038/nbt1097-988 pmid: 9335051
[7] Cao Q, Lyu W, Jiang H, Chen X, Wang X, Wang Y. Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress. Int J Biol Macromol, 2022, 205: 749-760.
doi: 10.1016/j.ijbiomac.2022.03.109 pmid: 35331791
[8] Hernández Estévez I, Rodríguez Hernández M. Plant Glutathione S-transferases: an overview. Plant Gene, 2020, 23: 100233.
[9] Wang T, Zhang D, Chen L, Wang J, Zhang W-H. Genome-wide analysis of the glutathione S-transferase family in wild Medicago ruthenica and drought-tolerant breeding application of MruGSTU39 gene in cultivated alfalfa. Theor Appl Genet, 2022, 135: 853-864.
[10] Jing X Q, Zhou M R, Nie X M, Zhang L, Shi P T, Shalmani A, Miao H, Li W Q, Liu W T, Chen K M. OsGSTU6 contributes to cadmium stress tolerance in rice by involving in intracellular ROS homeostasis. J Plant Growth Regul, 2021, 40: 945-961.
[11] Moons A. Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots 1. FEBS Lett, 2003, 553: 427-432.
doi: 10.1016/s0014-5793(03)01077-9 pmid: 14572664
[12] Sharma R, Sahoo A, Devendran R, Jain M. Over-expression of a rice tau class glutathione S-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS One, 2014, 9: e92900.
[13] Yang Y, Li J, Li H, Ding Y, Wu W, Qin R, Ni J, Xu R, Wei P, Yang J. OsGSTU5 and OsGSTU37 encoding glutathione reductases are required for cadmium tolerance in rice. Int J Environ Sci Technol, 2023, 20: 10253-10260.
[14] Srivastava D, Verma G, Chauhan A S, Pande V, Chakrabarty D. Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance. Metallomics, 2019, 11: 375-389.
doi: 10.1039/c8mt00204e pmid: 30516767
[15] Li J, Meng L, Ren S, Jia C, Liu R, Jiang H, Chen J. OsGSTU17, a tau class glutathione S-transferase gene, positively regulates drought stress tolerance in Oryza sativa. Plants, 2023, 12:3166.
[16] Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3treatment. BMC Plant Biol, 2010, 10: 153.
[17] Wang Z Y, Song F B, Cai H, Zhu Y M, Bai X, Ji W, Li Y, Hua Y. Over-expressing GsGST14 from Glycine soja enhances alkaline tolerance of transgenic Medicago sativa. Biol Plant, 2012, 56: 516-520.
[18] 王臻昱, 才华, 柏锡, 纪巍, 李勇, 魏正巍, 朱延明. 野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析. 作物学报, 2012, 38: 971-979.
doi: 10.3724/SP.J.1006.2012.00971
Wang Z Y, Cai H, Bai X, Ji W, Li Y, Wei Z W, Zhu Y M. Isolation of GsGST19 from Glycine soja and analysis of saline- alkaline tolerance for transgenic Medicago sativa. Acta Agron Sin, 2012, 38: 971-979 (in Chinese with English abstract)
[19] Jia B, Sun M, Sun X, Li R, Wang Z, Wu J, Wei Z, Duanmu H, Xiao J, Zhu Y. Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content. Physiol Planta, 2016, 156: 176-189.
[20] Jain M, Ghanashyam C, Bhattacharjee A. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics, 2010, 11: 73.
doi: 10.1186/1471-2164-11-73 pmid: 20109239
[21] Kaur N, Sharma I, Kirat K, Pati P K. Detection of reactive oxygen species in Oryza sativa L. (rice). Biol Protocol, 2016, 6: 2061.
[22] Mauch F, Dudler R. Differential induction of distinct glutathione- S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol, 1993, 102: 1193-1201.
pmid: 8278547
[23] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 125: 189-198.
doi: 10.1016/0003-9861(68)90654-1 pmid: 5655425
[24] 李合生. 植物生理生化实验原理和技术. 北京: 植物生理生化实验原理和技术, 2000. pp 167-169, 184-185.
Li H S. Principles and Techniques of Plant Physiological Biochemical Experimental. Beijing: Higher Education Press, 2000. pp 167-169, 184-185 (in Chinese).
[25] Zhao W, Zhou Q, Tian Z, Cui Y, Liang Y, Wang H. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci Total Environ, 2020, 722: 137428.
[26] 刘淼, 梁正伟. 低氮高密增微肥对苏打盐碱地水稻产量和氮肥利用率的影响. 土壤与作物, 2021, 10(3): 245-255.
Liu M, Liang Z W. The effect of low nitrogen, high density, and increased micronutrient fertilizer on rice yield and nitrogen fertilizer utilization efficiency in soda saline alkali soil. Soil Crops, 2021, 10(3): 245-255 (in Chinese with English abstract).
[27] 任鹏飞, 尚丽霞, 蔡勤安, 于志晶, 马瑞. 植物耐碱性研究进展及其在大豆中的应用展望. 大豆科学, 2019, 38: 977-985.
Ren P F, Shang L X, Cai Q A, Yu Z J, Ma R. Research progress on plant alkali resistance and its application prospects in soybeans. Soybean Sci, 2019, 38: 977-985 (in Chinese with English abstract).
[28] Daliakopoulos I N, Tsanis I K, Koutroulis A, Kourgialas N N, Varouchakis A E, Karatzas G P, Ritsema C J. The threat of soil salinity: a European scale review. Sci Total Environ, 2016, 573: 727-739.
[29] 冯浩杰. 水稻种植条件下脱硫石膏改良碱土的研究. 山东农业大学硕士学位论文, 山东泰安, 2016.
Feng H J. A Study on Improving Alkaline Soil with Desulfurization Gypsum under Rice Planting Conditions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[30] 马国辉, 郑殿峰, 母德伟, 王奉斌, 戴其根, 魏中伟, 冯乃杰, 王才林. 耐盐碱水稻研究进展与展望. 杂交水稻, 2024, 39(1): 1-10.
Ma G H, Zheng D F, Mu D W, Wang F B, Dai Q G, Wei Z W, Feng N J, Wang C L. Research progress and prospects of salt alkali tolerant rice. Hybrid Rice, 2024, 39(1): 1-10 (in Chinese with English abstract).
[31] Lan T, Yang Z L, Yang X, Liu Y J, Wang X R, Zeng Q Y. Extensive functional diversification of the populus glutathione S-transferase supergene family. Plant Cell, 2009, 21: 3749-3766.
[32] Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet, 2004, 271: 511-521.
[33] 张创娟. 植物谷胱甘肽转移酶及其响应非生物胁迫的研究. 兰州交通大学硕士学位论文, 甘肃兰州, 2023.
Zhang C J. A Study on Plant Glutathione Transferase and Its Response to Abiotic Stress. MS Thesis of Lanzhou Jiaotong University, Lanzhou, Gansu, China, 2023 (in Chinese with English abstract).
[34] Frova C. Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng, 2006, 23: 149-169.
pmid: 16839810
[35] Zhao F, Zhang H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tiss Org, 2006, 86: 349-358.
[26] Rahantaniaina M, Tuzet A, Mhamdi A, Noctor G. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front Plant Sci, 2013, 4: 477.
[37] Zhao F Y, Wang X Y, Zhao Y X, Zhang H. Transferring the Suaeda salsa glutathione-S-transferase and catalase genes enhances low temperature stress resistance in transgenic rice seedlings. Plant Cell Tiss Org, 2006, 32: 231-238.
[38] Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tiss Org, 2014, 117: 99-112.
[39] Jiang Y, Yang B, Harris N S, Deyholos M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot, 2007, 58: 3591-3607.
[40] Huang C, Guo T, Zheng S C, Feng Q L, Liang J H, Li L. Increased cold tolerance in Arabidopsis thaliana transformed with Choristoneura fumiferana glutathione S-transferase gene. Biol Planta, 2009, 53: 183-187.
[41] Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett, 2010, 32: 1173-1179.
[42] Dixon D P, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 2010, 71: 338-350.
doi: 10.1016/j.phytochem.2009.12.012 pmid: 20079507
[43] Meng H, Zhao J, Yang Y, Diao K, Zheng G, Li T, Dai X, Li J. PeGSTU58, a glutathione S-transferase from Populus euphratica, enhances salt and drought stress tolerance in transgenic Arabidopsis. Int J Mol Sci, 2023, 24: 9354.
[1] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[2] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[3] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[4] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[5] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[6] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[7] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[8] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[9] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[10] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[11] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[12] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[13] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[14] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[15] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张洁夫;戚存扣;栗根义;浦惠明;陈松;陈新军;高建芹;陈锋;顾慧;傅寿仲. 甘蓝型油菜遗传图谱构建与无花瓣性状QTL定位[J]. 作物学报, 2007, 33(08): 1246 -1254 .
[2] 黄显波;田志宏;邓则勤;郑家团;林成豹;唐江霞. 水稻三明显性核不育基因的初步鉴定[J]. 作物学报, 2008, 34(10): 1865 -1868 .
[3] 严宗卜. 美国水稻品种对稻瘟病小种IE-1k、IB-33、IB-49和IC-17的抗性遗传[J]. 作物学报, 2004, 30(09): 872 -877 .
[4] 王洪刚;刘树兵;高居荣;李兴锋;李斯深. 小麦新材料Talkrph1bRht3和krph1bRht3综合体的创制及其遗传分析[J]. 作物学报, 2004, 30(01): 43 -46 .
[5] 杨人俊. 野赤豆在我国的地理分布[J]. 作物学报, 2001, 27(06): 905 -907 .
[6] 李硕碧;单明珠;王怡;李必运;张蜀光. 鲜湿面条专用小麦品种品质的评价[J]. 作物学报, 2001, 27(03): 334 -338 .
[7] 丁秀兰;江玲;张迎信;孙黛珍;翟虎渠;万建民. 利用回交重组自交群体检测水稻条纹叶枯病抗性位点[J]. 作物学报, 2005, 31(08): 1041 -1046 .
[8] 张世煌;石德权;徐家舜;杨引福;康继伟;汪黎明. 对两个亚热带优质蛋白玉米群体的适应性混合选择研究[J]. 作物学报, 1995, 21(03): 270 -280 .
[9] 叶绍文; 容珊; 杨鸿信. 玉米雄性不育系和恢复系的选育与利用的研究[J]. 作物学报, 1979, 5(03): 55 -63 .
[10] 赵秀兰;李文雄. 春小麦籽粒灌浆期沉淀值动态的定量研究[J]. 作物学报, 2006, 32(02): 301 -305 .