欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 44-57.doi: 10.3724/SP.J.1006.2025.44079

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜BnaSLY1基因进化分析及功能研究

李嘉欣(), 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静*()   

  1. 华中农业大学作物遗传改良全国重点实验室 / 国家油菜工程技术研究中心 / 洪山实验室, 湖北武汉 430070
  • 收稿日期:2024-05-13 接受日期:2024-08-15 出版日期:2025-01-12 网络出版日期:2024-09-02
  • 通讯作者: *文静, E-mail: wenjing@mail.hzau.edu.cn
  • 作者简介:E-mail: 18174003505@163.com
  • 基金资助:
    国家自然科学基金项目(31771831);国家自然科学基金项目(31000721);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12)

Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L.

LI Jia-Xin(), HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing*()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / National Engineering Research Center of Rapeseed / Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2024-05-13 Accepted:2024-08-15 Published:2025-01-12 Published online:2024-09-02
  • Contact: *E-mail: wenjing@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31771831);National Natural Science Foundation of China(31000721);China Agriculture Research System of MOF and MARA(CARS-12)

摘要:

赤霉素调控植物表皮细胞增长、茎叶伸长以及株型建成。拟南芥SLY1属于F-box蛋白, 它通过靶向泛素化赤霉素信号转导路径的负向调控因子——DELLA蛋白来影响植物生长发育, 然而油菜中BnaSLY1的基因功能尚未揭示。本研究对BnaSLY1进行了表达特征和进化树分析, 利用CRISPR/Cas9技术创制了BnaSLY1不同拷贝数的突变体, 结合RNA-Seq技术对BnaSLY1的生物学功能及其对油菜生长发育的影响进行了研究。结果表明, 甘蓝型油菜Westar中有2个SLY1同源拷贝BnaA01.SLY1BnaA06.SLY1, 它们表达模式基本相同, 为组成型表达基因, 其蛋白定位在细胞核, 且在不同的油菜品种及十字花科植物间序列保守。与对照相比, 单突bnaa01sly1bnaa06sly1开花时间推迟, 株高显著降低, 而双突bnasly1还表现出深绿色光叶表型, 叶片厚度增加, 开花期比单突进一步推迟, 株高也进一步降低。RNA-Seq结果显示, 双突与Westar之间的差异表达基因显著富集在生长素信号转导路径以及蜡质合成通路, 多个开花时间相关基因表达也发生显著变化。本研究表明, BnaSLY1除影响植物株高和开花时间等生长发育进程, 还影响表皮蜡质合成, 为探索赤霉素信号转导路径在甘蓝型油菜生长发育中的重要作用奠定了理论基础。

关键词: 甘蓝型油菜, BnaSLY1, 赤霉素, 株型, 蜡质合成, 开花时间, RNA-Seq

Abstract:

Gibberellins regulate plant epidermal cell growth, stem and leaf expansion, and plant architecture. In Arabidopsis, SLY1 encodes an F-box protein that modulates plant growth by targeting the negative regulator of GA signaling, the DELLA protein, for ubiquitination and subsequent degradation. However, the function of BnaSLY1 in Brassica napus has not been previously revealed. In this study, we characterized the expression patterns and performed a phylogenetic analysis of BnaSLY1. Using CRISPR/Cas9 technology, we generated mutants with different copy numbers of BnaSLY1. By integrating RNA-Seq analysis, we investigated the biological functions of BnaSLY1 and its impact on the growth and development of Brassica napus. Our results showed that there are two copies of SLY1 in Brassica napus, with similar expression patterns and constitutive expression. The protein is localized in the nucleus and is highly conserved among different varieties of rapeseed and cruciferous plants. Phenotypic analysis of mutants revealed that, compared to the control, single mutants bnaa01sly1 and bnaa06sly1 exhibited delayed flowering and significantly reduced plant height, while the double mutant bnasly1 showed a dark green leaf phenotype, increased leaf thickness, further delayed flowering, and further reduced plant height. RNA-Seq analysis between Westar and bnasly1 showed significant enrichment of differentially expressed genes in the auxin signaling pathway and wax biosynthesis pathway, with several flowering time-related genes showing significant expression changes. This study demonstrates that BnaSLY1 not only influences plant height and flowering time but also affects epidermal wax synthesis, thereby laying a theoretical foundation for exploring the crucial role of the GA signaling pathway in the growth and development of Brasscia napus.

Key words: Brassica napus L., BnaSLY1, gibberellin, plant architecture, wax biosynthesis, flowering time, RNA-seq

附表1

本研究用到的引物"

用途
Functions
引物
Primers
序列
Sequence (5'-3')
qRT-PCR分析
qRT-PCR Analysis
QBnaSLY1.A01-F TCAAACTCAGTTACAAACGGTGACG
QBnaSLY1.A01-R TGCTCACGCAAGAAGACGTTGCTAA
QBnaSLY1.A06-F TCAAACTCAGTTACAGACGGT
QBnaSLY1.A06-R GCAAGATGATGTTGCTAAGG
QActin-F GCTGACCGTATGAGCAAAG
QActin-R AAGATGGATGGACCCGAC
亚细胞定位
Subcellular localization
C83R TGTGCCCATTAACATCACCATC
SalI-GFP-F CTTGCATGCCTGCAGGTCGACATGAAACGCAGTGCTTCAAACT
BamHI-GFP-R TCTACCGGTACCCGGGGATCCCCGGGGAGTCTCTTAGTGAAATTCATC
CRISPR/Cas9基因
编辑
CRISPR/Cas9
gene editing
Cr-SLY1.A01-F0 ATATATGGTCTCGATTGGAGTAGATTCTCGTCTAAGTGTT
Cr-SLY1.A01-R0 TGTACTAGGTGCGGAAGCACGGTTTTAGAGCTAGAAATAGC
Cr-SLY1.A01-BsF AACGAGTAGATTCTCGTCTAAGTCAATCTCTTAGTCGACTCTAC
Cr-SLY1.A01-BsR ATTATTGGTCTCGAAACTACTAGGTGCGGAAGCACGCAA
Cr-SLY1.A06-F0 ATATATGGTCTCGATTGCCAGCTCAGATTCGTAGTCTGTT
Cr-SLY1.A06-R0 TGAGACTACGAATCTGAGCTGGGTTTTAGAGCTAGAAATAGC
Cr-SLY1.A06-BsF AACCCAGCTCAGATTCGTAGTCTCAATCTCTTAGTCGACTCTAC
Cr-SLY1.A06-BsR ATTATTGGTCTCGAAACAGACTACGAATCTGAGCTGGCAA
Cr-SLY1s-F0 ATATATGGTCTCGATTGCGTGAGCAAGATCTGGCACGTT
Cr-SLY1s-R0 TGCGTGCTTCAACACCTCGTAGTTTTAGAGCTAGAAATAGC
Cr-SLY1s-BsF AACCGTGAGCAAGATCTGGCACCAATCTCTTAGTCGACTCTAC
Cr-SLY1s-BsR ATTATTGGTCTCCGTGCTTCAACACCTCGTACAA
阳性苗检测
Detection of positive transgenic plants
U626-IDF TGTCCCAGGATTAGAATGATTAGGC
U629-IDR AGCCCTCTTCTTTCGATCCATCAAC
Hi-TOM分析
Hi-Tom analysis
A01-T1/T2-F GGAGTGAGTACGGTGTGCCAAGAAGATGAAAAAGACCACAGA
A01-T1/T2-R GAGTTGGATGCTGGATGGTAGAGCGAGTGGAGTTGCTTGAA
A06-T1/T2-F GGAGTGAGTACGGTGTGCTGACGCGAGTAACAAGAAGATG
A06-T1/T2-R GAGTTGGATGCTGGATGGTCGAGAGAGGCCACAGGTA
HI-T1/T2-F GGAGTGAGTACGGTGTGCAAGATCTGGCACAGGACT
HI-T1/T2-R GAGTTGGATGCTGGATGGTAGTACCGAATCGAGAGGAG
F-1 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGCGTTGGAGTGAGTACGGTGTGC
F-2 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGTAGTGGAGTGAGTACGGTGTGC
F-3 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTACGCTGGAGTGAGTACGGTGTGC
F-4 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTCTCGTGGAGTGAGTACGGTGTGC
F-5 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGCTCTGGAGTGAGTACGGTGTGC
F-6 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTAGTCTGGAGTGAGTACGGTGTGC
F-7 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTCGACTGGAGTGAGTACGGTGTGC
F-8 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGATGTGGAGTGAGTACGGTGTGC
F-9 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTATACTGGAGTGAGTACGGTGTGC
F-10 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTCACATGGAGTGAGTACGGTGTGC
F-11 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTGTGCTGGAGTGAGTACGGTGTGC
F-12 ACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTACTATGGAGTGAGTACGGTGTGC
R-A GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGCGTTGAGTTGGATGCTGGATGG
R-B GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGTAGTGAGTTGGATGCTGGATGG
R-C GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTACGCTGAGTTGGATGCTGGATGG
R-D GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTCTCGTGAGTTGGATGCTGGATGG
R-E GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGCTCTGAGTTGGATGCTGGATGG
R-F GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTAGTCTGAGTTGGATGCTGGATGG
R-G GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTCGACTGAGTTGGATGCTGGATGG
R-H GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTGTGATGTGAGTTGGATGCTGGATGG
indexP-F11 AATGATACGGCGACCACCGAGATCTACACTCATGGTCACACTCTTTCCCTACACGACGC
indexP-F12 AATGATACGGCGACCACCGAGATCTACACAGCGATGTACACTCTTTCCCTACACGACGC
indexP-R17 CAAGCAGAAGACGGCATACGAGATTTACGAGGGTGACTGGAGTTCAGACGTGTGCTCTT
indexP-R18 CAAGCAGAAGACGGCATACGAGATACAGTGTGGTGACTGGAGTTCAGACGTGTGCTCTT

附图1

不同甘蓝型油菜品种间SLY1核苷酸序列比对 A: 不同品种间A亚基因组SLY1核苷酸序列比对; B: 不同品种间C亚基因组SLY1核苷酸序列比对。黑色阴影部分为外显子,灰色部分为内含子。"

图1

BnaSLY1的蛋白序列和SLY1进化分析 A: 拟南芥、白菜、甘蓝和甘蓝型油菜(Westar)中SLY1氨基酸序列比较分析; B: 不同甘蓝型油菜品种间BnaSLY1进化树分析, 分支上数字代表bootstrap值(%); C: 不同物种SLY1进化树分析。绿色部分代表I群, 蓝色部分代表II群, 其余颜色代表III群。CICLE: 柑橘; FCD: 无花果; EVM: 大麻; Cla97: 西瓜; SORBI: 高粱; Zm: 玉米; Os: 水稻; Traes: 小麦; HORVU: 大麦; AVESA: 燕麦; Rchi: 蔷薇; Csa: 黄瓜; Vitvi: 葡萄; EUTSA: 盐芥; DCAR: 胡萝卜; CEY00: 猕猴桃; SIN: 芝麻; HanXRQ: 向日葵; LSAT: 莴苣; FRAEX: 白蜡; OE9A: 橄榄; AT: 拟南芥; Bna: 甘蓝型油菜; Bra: 白菜; Bo: 甘蓝。"

图2

BnaSLY1表达特征 A: 不同拷贝BnaSLY1在Westar各组织中的相对表达量; B: BnaSLY1在ZS11各组织中的表达热图, 表达数据为各基因TPM值, 数据来源于BnIR数据库; C: BnaSLY1在本氏烟草中的亚细胞定位。标尺为25 μm。"

图3

BnaSLY1靶点设计及基因敲除突变体编辑情况 A: BnaSLY1基因结构和靶点位置; B: T1代BnaSLY1基因靶点突变情况。绿色字体表示PAM序列, 红色字体表示突变碱基, 红色虚线表示碱基缺失。"

附表2

CRISPR/Cas9敲除转基因T0代阳性苗靶点编辑情况统计"

突变体
Mutant
再生植株
Number of
transgenic plants
阳性株数
Number of positive plants
编辑效率
Edit efficiency (%)
拷贝全突
Total mutation efficiency (%)
靶点1编辑效率
Editing efficiency of target 1 (%)
靶点2编辑效率
Editing efficiency of target 2 (%)
bnaa01sly1 22 18 (81.82%) 66.70 41.70 58.30 33.30
bnaa06sly1 10 7 (70.00%) 57.10 25.00 100.00 0
bnasly1 86 65 (75.58%) 64.60 28.60 52.30 69.10

图4

BnaSLY1基因敲除突变体表型特征 A: Westar和突变体叶片表型; B: Westar和突变体苗期表型; C: Westar和突变体花期表型; D: Westar和突变体株高; E: Westar和突变体开花时间。标尺: 8 cm。**表示差异极显著(P < 0.01)。"

图5

BnaSLY1影响叶片细胞形态、叶绿素及表皮蜡质合成 A: WT和突变体的叶片石蜡切片, 标尺为100 μm; B: WT和突变体叶绿体超微结构, 标尺为2 μm; C: WT和突变体叶片厚度统计; D: WT和突变体叶绿素含量比较。sm: 海绵组织; Cp: 叶绿体; Tm: 类囊体。*和**分别表示差异显著(P < 0.05)和极显著(P < 0.01); E: WT和突变体叶片表皮蜡质扫描电镜; 标尺为5 μm。"

图6

Westar与bnasly1内源GA含量比较 **表示差异极显著(P < 0.01)。"

附表3

样品RNA-seq测序数据总览"

样本
Sample
测序总读数
Total reads
质控后读数
Clean reads
错误率
Error rate (%)
总比对率
Mapped ratio (%)
Q20 Q30
(%) (%)
CK1 51,374,928 50,456,150 0.026053 94.82 97.16 94.89
CK2 44,454,300 43,654,324 0.026104 94.73 97.18 94.92
CK3 46,223,656 45,461,716 0.002838 94.86 97.25 95.02
T1 43,448,334 42,710,898 0.002819 94.73 97.26 95.04
T2 41,761,542 41,089,858 0.002842 94.78 97.28 95.06
T3 41,721,250 40,921,468 0.008204 94.58 97.06 94.7

附图2

转录组样品皮尔森相关系数"

附图3

Westar与bnasly1差异基因火山图"

附图4

Westar与bnasly1差异基因GO分类"

附图5

Westar与bnasly1差异基因KEGG富集分析"

图7

生长素信号转导通路差异表达基因分析 a、b、c表示基因在Westar三个生物学重复中的log10(FPKM)值, d、e、f表示基因在bnasly1三个生物学重复中log10(FPKM)值, g表示Westar与突变体之间的log2FC。AUX1/IAA: 生长素/吲哚-3-乙酸; TIR1: 转运抑制响应蛋白; ARF: 生长素响应因子; SAUR: 生长素上调小RNA; GH3: 酰胺合成酶。"

附表4

GA合成及信号转导路径差异基因"

Gene ID Putative gene FPKM log2Fold Change
WT-1 WT-2 WT-3 bnasly1-1 bnasly1-2 bnasly1-3
BnaA01G0149400ZS BnaA01.GA20ox1 1.91 2.61 2.32 9.73 7.20 10.23 2.06
BnaC01G0190000ZS BnaC01.GA20ox1 0.56 0.21 0.77 7.48 5.88 8.21 3.86
BnaC07G0465100ZS BnaC07.GA20ox1 0.00 0.00 0.10 2.27 2.26 3.63 6.44
BnaA06G0105000ZS BnaA06.GA3ox1 0.59 0.61 1.51 11.75 10.50 17.79 3.95
BnaC05G0130100ZS BnaC05.GA3ox1 1.22 1.12 1.57 8.35 8.45 10.71 2.89
BnaA02G0232000ZS BnaA02.GA2ox1 1.48 3.44 1.51 0.00 0.07 0.27 -4.16
BnaC06G0441000ZS BnaC06.GA2ox1 3.20 3.60 3.07 0.57 0.46 0.13 -3.02
BnaC05G0539100ZS BnaC05.GID1A 10.15 8.42 8.88 27.94 25.41 27.80 1.63
BnaA04G0003700ZS BnaA04.GID1B 0.88 0.17 0.49 2.02 2.18 1.27 1.90
BnaC04G0258300ZS BnaC04.GID1B 1.98 1.65 1.12 7.63 5.73 7.36 2.19
BnaC08G0417900ZS BnaC08.GID1B 3.28 3.63 3.36 6.70 7.75 7.95 1.20
BnaA02G0160500ZS BnaA02.RGL1 6.49 12.58 7.56 2.48 2.13 3.04 -1.72
BnaC02G0205300ZS BnaC02.RGL1 7.19 17.43 9.53 3.80 3.51 2.02 -1.80
Gene ID Regulation GO KEGG Swissprot Pfam NR
BnaA01G0149400ZS Up GO:0005506 K05282 Gibberellin 20 oxidase 1 OS=Arabidopsis thaliana GN=GA20OX1 PE=2 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaA01g35230D [Brassica napus]
BnaC01G0190000ZS Up GO:0005506 K05282 Gibberellin 20 oxidase 1 OS=Arabidopsis thaliana GN=GA20OX1 PE=2 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaC01g17380D [Brassica napus]
BnaC07G0465100ZS Up GO:0005506 K05282 Gibberellin 20 oxidase 1 OS=Arabidopsis thaliana GN=GA20OX1 PE=2 SV=2 2OG-Fe(II) oxygenase superfamily BnaC07g39650D [Brassica napus]
BnaA06G0105000ZS Up GO:0016491 K04124 Gibberellin 3-beta-dioxygenase 1 OS=Arabidopsis thaliana GN=GA3OX1 PE=1 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaA06g10250D [Brassica napus]
BnaC05G0130100ZS Up GO:0016491 K04124 Gibberellin 3-beta-dioxygenase 1 OS=Arabidopsis thaliana GN=GA3OX1 PE=1 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaC05g11920D [Brassica napus]
BnaA02G0232000ZS Down GO:0016491 K04125 Gibberellin 2-beta-dioxygenase 1 OS=Arabidopsis thaliana GN=GA2OX1 PE=2 SV=2 non-haem dioxygenase in morphine synthesis N-terminal PREDICTED: gibberellin 2-beta-dioxygenase 1-like [Brassica rapa]
BnaC06G0441000ZS Down GO:0005506 K04125 Gibberellin 2-beta-dioxygenase 1 OS=Arabidopsis thaliana GN=GA2OX1 PE=2 SV=2 non-haem dioxygenase in morphine synthesis N-terminal BnaC06g38910D [Brassica napus]
BnaC05G0539100ZS Up GO:0008152 K14493 Gibberellin receptor GID1A OS=Arabidopsis thaliana GN=GID1A PE=1 SV=1 alpha/beta hydrolase fold BnaC05g46680D [Brassica napus]
BnaA04G0003700ZS Up GO:0008152 K14493 Gibberellin receptor GID1B OS=Arabidopsis thaliana GN=GID1B PE=1 SV=1 alpha/beta hydrolase fold BnaA04g00210D [Brassica napus]
BnaC04G0258300ZS Up GO:0008152 K14493 Gibberellin receptor GID1B OS=Arabidopsis thaliana GN=GID1B PE=1 SV=1 alpha/beta hydrolase fold BnaC04g21040D [Brassica napus]
BnaC08G0417900ZS Up GO:0008152 K14493 Gibberellin receptor GID1B OS=Arabidopsis thaliana GN=GID1B PE=1 SV=1 alpha/beta hydrolase fold BnaCnng55170D [Brassica napus]
BnaA02G0160500ZS Down K14494 DELLA protein RGL1 OS=Arabidopsis thaliana GN=RGL1 PE=1 SV=1 Transcriptional regulator DELLA protein N terminal BnaCnng68300D [Brassica napus]
BnaC02G0205300ZS Down K14494 DELLA protein RGL1 OS=Arabidopsis thaliana GN=RGL1 PE=1 SV=1 Transcriptional regulator DELLA protein N terminal BnaCnng28010D [Brassica napus]

图8

蜡质合成通路差异表达基因分析 a、b、c表示基因在Westar三个生物学重复中log10(FPKM)值, d、e、f表示基因在bnasly1三个生物学重复中log10(FPKM)值, g表示野生型与突变体之间的log2FC。LACS: 长链酰基辅酶A合成酶; FAE: 脂肪酸延伸酶; CER3: 脂肪酸羟化酶(FAE复合体亚基); CER26: 转氨酶(FAE复合体亚基); WSD1: 蜡酯合酶/二酰甘油酰基转移酶; FAR: 脂肪酰基辅酶A还原酶; MAH1: 中链烷烃羟化酶; CYP: 细胞色素P450; GPAT: 甘油-3-磷酸酰基转移酶; 2-MHG: 2-单(10,16)-二羟基十六烷酰基甘油。"

附表5

花期相关差异基因"

Gene ID Putative gene FPKM log2Fold Change
WT-1 WT-2 WT-3 bnasly1-1 bnasly1-2 bnasly1-3
BnaA09G0591400ZS BnaA09.SVP 33.92 22.94 37.72 72.61 70.84 70.94 1.25
BnaC04G0438900ZS BnaC04.SVP 24.46 12.02 17.51 43.86 41.38 35.38 1.22
BnaC08G0443200ZS BnaC08.SVP 17.09 9.5 20.32 41.15 35.3 39.69 1.37
BnaA03G0039200ZS BnaA03.FLC 11.26 15.3 18.45 33.08 34.89 33.12 1.22
BnaA08G0227500ZS BnaA08.TEM1 2.00 0.95 1.51 9.99 5.86 11.65 2.68
BnaA09G0438900ZS BnaA09.TEM1 2.92 1.77 1.66 5.94 4.19 9.05 1.66
BnaC03G0630000ZS BnaC03.TEM1 1.84 1.30 1.43 9.28 4.55 10.92 2.50
BnaC05G0224800ZS BnaC05.TEM1 1.69 1.29 0.62 4.9 4.20 6.85 2.20
BnaA01G0166300ZS BnaA01.SPL 7.43 6.46 6.02 0 0 0 -9.03
BnaC01G0213600ZS BnaC01.SPL 5.96 5.57 7.85 0.25 0 0 -6.13
BnaC07G0475500ZS BnaC07.SPL 3.13 4.25 4.11 0 0.16 0.08 -5.52
BnaA07G0282700ZS BnaA07.FT 2.92 4.78 2.68 0.45 0.20 0.61 -2.95
BnaC06G0323800ZS BnaC06.FT 9.78 13.22 17.44 1.18 0.86 2.72 -3.02
Gene ID Regulation GO KEGG Swissprot Pfam NR
BnaA09G0591400ZS Up GO:0003700 K09264 MADS-box protein SVP OS=Arabidopsis thaliana GN=SVP PE=1 SV=1 K-box region short vegetative phase protein [Brassica juncea]
BnaC04G0438900ZS Up GO:0003677 K09264 MADS-box protein SVP OS=Arabidopsis thaliana GN=SVP PE=1 SV=1 K-box region MADS-box protein SVP [Brassica napus]
BnaC08G0443200ZS Up GO:0003677 K09264 MADS-box protein SVP OS=Arabidopsis thaliana GN=SVP PE=1 SV=1 K-box region BnaC08g34920D [Brassica napus]
BnaA03G0039200ZS Up GO:0003677 K09264 MADS-box protein FLOWERING LOCUS C OS=Arabidopsis thaliana GN=FLC PE=2 SV=1 K-box region MADS-box protein [Brassica napus]
BnaA08G0227500ZS Up GO:0003677 K09287 AP2/ERF and B3 domain-containing transcription repressor TEM1 OS=Arabidopsis thaliana GN=TEM1 PE=1 SV=1 AP2 domain PREDICTED: AP2/ERF and B3 domain-containing transcription repressor TEM1-like [Brassica rapa]
BnaA09G0438900ZS Up GO:0003677 K09287 AP2/ERF and B3 domain-containing transcription repressor TEM1 OS=Arabidopsis thaliana GN=TEM1 PE=1 SV=1 AP2 domain PREDICTED: AP2/ERF and B3 domain-containing transcription repressor TEM1-like [Brassica rapa]
BnaC03G0630000ZS Up GO:0003677 K09287 AP2/ERF and B3 domain-containing transcription repressor TEM1 OS=Arabidopsis thaliana GN=TEM1 PE=1 SV=1 AP2 domain BnaCnng04580D [Brassica napus]
BnaC05G0224800ZS Up GO:0003677 K09287 AP2/ERF and B3 domain-containing transcription repressor TEM1 OS=Arabidopsis thaliana GN=TEM1 PE=1 SV=1 AP2 domain BnaC05g20560D [Brassica napus]
BnaA01G0166300ZS Down Plant transcription factor NOZZLE BnaA01g16350D [Brassica napus]
BnaC01G0213600ZS Down Plant transcription factor NOZZLE BnaC01g19500D [Brassica napus]
BnaC07G0475500ZS Down Plant transcription factor NOZZLE BnaC07g40830D [Brassica napus]
BnaA07G0282700ZS Down K16223 Protein TWIN SISTER of FT OS=Arabidopsis thaliana GN=TSF PE=2 SV=1 Phosphatidylethanolamine-binding protein PREDICTED: protein TWIN SISTER of FT-like [Brassica rapa]
BnaC06G0323800ZS Down K16223 Protein FLOWERING LOCUS T OS=Arabidopsis thaliana GN=FT PE=1 SV=2 Phosphatidylethanolamine-binding protein flowering locus T variant 6 [Brassica carinata]
[1] Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol, 2020, 61: 1832-1849.
[2] Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
[3] Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523-530.
[4] Olszewski N, Sun T P, Gubler F. Gibberellin signaling. Plant Cell, 2002, 14: 61-80.
[5] Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul, 2015, 34: 740-760.
[6] Davière J M, Achard P. Gibberellin signaling in plants. Development, 2013, 140: 1147-1151.
[7] 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命. 生物技术通报, 2022, 38(2): 195-204.
Li Y D, Shan X H. Gibberellin metabolism regulation and green revolution. Biotechnol Bull, 2022, 38(2): 195-204 (in Chinese with English abstract).
[8] 董静, 尹梦回, 杨帆, 赵娟, 覃珊, 侯磊, 罗明, 裴炎, 肖月华. 棉花赤霉素不敏感矮化GID1同源基因的克隆和表达分析. 作物学报, 2009, 35: 1822-1830.
Dong J, Yin M H, Yang F, Zhao J, Qin S, Hou L, Luo M, Pei Y, Xiao Y H. Cloning and expression profiling of gibberellin insensitive dwarf GID1 homologous genes from cotton. Acta Agron Sin, 2009, 35: 1822-1830 (in Chinese with English abstract).
[9] Itoh H, Matsuoka M, Steber C M. A role for the ubiquitin-26S- proteasome pathway in gibberellin signaling. Trends Plant Sci, 2003, 8: 492-497.
[10] Su S, Hong J, Chen X F, Zhang C Q, Chen M J, Luo Z J, Chang S W, Bai S X, Liang W Q, Liu Q Q, Zhang D B. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnol J, 2021, 19: 2304-2318.
[11] Ito T, Okada K, Fukazawa J, Takahashi Y. DELLA-dependent and -independent gibberellin signaling. Plant Signal Behav, 2018, 13: e1445933.
[12] Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299: 1896-1898.
[13] Dill A, Thomas S G, Hu J H, Steber C M, Sun T P. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004, 16: 1392-1405.
[14] Gao S P, Chu C C. Gibberellin metabolism and signaling: targets for improving agronomic performance of crops. Plant Cell Physiol, 2020, 61: 1902-1911.
[15] Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J, 2004, 37: 626-634.
[16] El-Sharkawy I, Ismail A, Darwish A, El Kayal W, Subramanian J, Sherif S M. Functional characterization of a gibberellin F-box protein, PslSLY1, during plum fruit development. J Exp Bot, 2021, 72: 371-384.
[17] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
[18] Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 2001, 13: 999-1010.
[19] Bujarrabal A, Schumacher B. Hormesis running hot and cold. Cell Cycle, 2016, 15: 3335-3336.
[20] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101-1108.
[21] Liu H, Chen W D, Li Y S, Sun L, Chai Y H, Chen H X, Nie H C, Huang C L. CRISPR/Cas9 technology and its utility for crop improvement. Int J Mol Sci, 2022, 23: 10442.
[22] Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 451-476.
[23] Liu Q, Wang C, Jiao X Z, Zhang H W, Song L L, Li Y X, Gao C X, Wang K J. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 2019, 62: 1-7.
[24] 何若韫. 叶绿素含量测定. 新农业, 1980, (3): 31-32.
He R Y. Chlorophyll content determination. New Agric, 1980, (3): 31-32 (in Chinese with English abstract).
[25] Cancé C, Martin-Arevalillo R, Boubekeur K, Dumas R. Auxin response factors are keys to the many auxin doors. New Phytol, 2022, 235: 402-419.
[26] 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展. 植物学报, 2023, 58: 770-782.
Yuan Y, En H B Y E, Qi Y H. Research advances in biological functions of GH3 gene family in plants. Chin Bull Bot, 2023, 58: 770-782 (in Chinese with English abstract).
[27] 赵雪惠, 张蕊, 李玲, 付喜玲, 陈修德, 李冬梅, 肖伟, 高东升. 植物表皮蜡质合成及运输的研究进展. 植物生理学报, 2016, 52: 1128-1134.
Zhao X H, Zhang R, Li L, Fu X L, Chen X D, Li D M, Xiao W, Gao D S. Advances of plant cuticles biosynthesis and transport. Plant Physiol J, 2016, 52: 1128-1134 (in Chinese with English abstract).
[28] Birchler J A, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell, 2022, 34: 2466-2474.
[29] Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18: 3399-3414.
[30] Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell, 2010, 22: 2680-2696.
[31] Bao S, Hua C, Shen L, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Plant Cell, 2020, 62: 118-131.
[32] Olimpieri I, Caccia R, Picarella M E, Pucci A, Santangelo E, Soressi G P, Mazzucato A. Constitutive co-suppression of the GA 20-oxidase1 gene in tomato leads to severe defects in vegetative and reproductive development. Plant Sci, 2011, 180: 496-503.
[33] Willige B C, Ghosh S, Nill C, Zourelidou M, Dohmann E M N, Maier A, Schwechheimer C. The della domain of ga insensitive mediates the interaction with the ga insensitive dwarf1a gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19: 1209-1220.
[34] Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Plant Cell, 2012, 3: 808.
[35] Mateos J L, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P, Coupland G. Combinatorial activities of short vegetative phase and flowering locus c define distinct modes of flowering regulation in Arabidopsis. Plant Cell, 2015, 16: 31.
[36] Hu J, Su H L, Cao H, Wei H B, Fu X K, Jiang X M, Song Q, He X H, Xu C Z, Luo K M. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell, 2022, 34: 2688-2707.
[37] Schneider-Belhaddad F, Kolattukudy P. Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. Arch Biochem Biophys, 2000, 377: 341-349.
[38] Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F. CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol, 2009, 150: 1831-1843.
[1] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[2] 望嘉翔, 郁雪婷, 李梦桃, 麦伟涛, 陈新, 王文泉. MeLAZY1c基因调控木薯株型的初步研究[J]. 作物学报, 2024, 50(6): 1514-1524.
[3] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[4] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[5] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[6] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[7] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[8] 刘雨杭, 赵书宏, 祝婷婷, 梁振宇, 贺大海, 陈佳博, 任勇, 黄林, 樊高琼, 伍碧华. 二氢赤霉素对不同增密条件下蜀麦133冠层光能截获和产量的影响[J]. 作物学报, 2024, 50(11): 2787-2800.
[9] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[10] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[11] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[12] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[13] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
[14] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[15] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .