作物学报 ›› 2025, Vol. 51 ›› Issue (1): 44-57.doi: 10.3724/SP.J.1006.2025.44079
李嘉欣(
), 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静*(
)
LI Jia-Xin(
), HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing*(
)
摘要:
赤霉素调控植物表皮细胞增长、茎叶伸长以及株型建成。拟南芥SLY1属于F-box蛋白, 它通过靶向泛素化赤霉素信号转导路径的负向调控因子——DELLA蛋白来影响植物生长发育, 然而油菜中BnaSLY1的基因功能尚未揭示。本研究对BnaSLY1进行了表达特征和进化树分析, 利用CRISPR/Cas9技术创制了BnaSLY1不同拷贝数的突变体, 结合RNA-Seq技术对BnaSLY1的生物学功能及其对油菜生长发育的影响进行了研究。结果表明, 甘蓝型油菜Westar中有2个SLY1同源拷贝BnaA01.SLY1和BnaA06.SLY1, 它们表达模式基本相同, 为组成型表达基因, 其蛋白定位在细胞核, 且在不同的油菜品种及十字花科植物间序列保守。与对照相比, 单突bnaa01sly1和bnaa06sly1开花时间推迟, 株高显著降低, 而双突bnasly1还表现出深绿色光叶表型, 叶片厚度增加, 开花期比单突进一步推迟, 株高也进一步降低。RNA-Seq结果显示, 双突与Westar之间的差异表达基因显著富集在生长素信号转导路径以及蜡质合成通路, 多个开花时间相关基因表达也发生显著变化。本研究表明, BnaSLY1除影响植物株高和开花时间等生长发育进程, 还影响表皮蜡质合成, 为探索赤霉素信号转导路径在甘蓝型油菜生长发育中的重要作用奠定了理论基础。
| [1] | Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol, 2020, 61: 1832-1849. |
| [2] | Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251. |
| [3] | Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523-530. |
| [4] | Olszewski N, Sun T P, Gubler F. Gibberellin signaling. Plant Cell, 2002, 14: 61-80. |
| [5] | Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul, 2015, 34: 740-760. |
| [6] | Davière J M, Achard P. Gibberellin signaling in plants. Development, 2013, 140: 1147-1151. |
| [7] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命. 生物技术通报, 2022, 38(2): 195-204. |
| Li Y D, Shan X H. Gibberellin metabolism regulation and green revolution. Biotechnol Bull, 2022, 38(2): 195-204 (in Chinese with English abstract). | |
| [8] | 董静, 尹梦回, 杨帆, 赵娟, 覃珊, 侯磊, 罗明, 裴炎, 肖月华. 棉花赤霉素不敏感矮化GID1同源基因的克隆和表达分析. 作物学报, 2009, 35: 1822-1830. |
| Dong J, Yin M H, Yang F, Zhao J, Qin S, Hou L, Luo M, Pei Y, Xiao Y H. Cloning and expression profiling of gibberellin insensitive dwarf GID1 homologous genes from cotton. Acta Agron Sin, 2009, 35: 1822-1830 (in Chinese with English abstract). | |
| [9] | Itoh H, Matsuoka M, Steber C M. A role for the ubiquitin-26S- proteasome pathway in gibberellin signaling. Trends Plant Sci, 2003, 8: 492-497. |
| [10] | Su S, Hong J, Chen X F, Zhang C Q, Chen M J, Luo Z J, Chang S W, Bai S X, Liang W Q, Liu Q Q, Zhang D B. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnol J, 2021, 19: 2304-2318. |
| [11] | Ito T, Okada K, Fukazawa J, Takahashi Y. DELLA-dependent and -independent gibberellin signaling. Plant Signal Behav, 2018, 13: e1445933. |
| [12] | Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299: 1896-1898. |
| [13] | Dill A, Thomas S G, Hu J H, Steber C M, Sun T P. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004, 16: 1392-1405. |
| [14] | Gao S P, Chu C C. Gibberellin metabolism and signaling: targets for improving agronomic performance of crops. Plant Cell Physiol, 2020, 61: 1902-1911. |
| [15] | Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J, 2004, 37: 626-634. |
| [16] | El-Sharkawy I, Ismail A, Darwish A, El Kayal W, Subramanian J, Sherif S M. Functional characterization of a gibberellin F-box protein, PslSLY1, during plum fruit development. J Exp Bot, 2021, 72: 371-384. |
| [17] | Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261. |
| [18] | Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 2001, 13: 999-1010. |
| [19] | Bujarrabal A, Schumacher B. Hormesis running hot and cold. Cell Cycle, 2016, 15: 3335-3336. |
| [20] | Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101-1108. |
| [21] | Liu H, Chen W D, Li Y S, Sun L, Chai Y H, Chen H X, Nie H C, Huang C L. CRISPR/Cas9 technology and its utility for crop improvement. Int J Mol Sci, 2022, 23: 10442. |
| [22] | Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 451-476. |
| [23] | Liu Q, Wang C, Jiao X Z, Zhang H W, Song L L, Li Y X, Gao C X, Wang K J. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 2019, 62: 1-7. |
| [24] | 何若韫. 叶绿素含量测定. 新农业, 1980, (3): 31-32. |
| He R Y. Chlorophyll content determination. New Agric, 1980, (3): 31-32 (in Chinese with English abstract). | |
| [25] | Cancé C, Martin-Arevalillo R, Boubekeur K, Dumas R. Auxin response factors are keys to the many auxin doors. New Phytol, 2022, 235: 402-419. |
| [26] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展. 植物学报, 2023, 58: 770-782. |
| Yuan Y, En H B Y E, Qi Y H. Research advances in biological functions of GH3 gene family in plants. Chin Bull Bot, 2023, 58: 770-782 (in Chinese with English abstract). | |
| [27] | 赵雪惠, 张蕊, 李玲, 付喜玲, 陈修德, 李冬梅, 肖伟, 高东升. 植物表皮蜡质合成及运输的研究进展. 植物生理学报, 2016, 52: 1128-1134. |
| Zhao X H, Zhang R, Li L, Fu X L, Chen X D, Li D M, Xiao W, Gao D S. Advances of plant cuticles biosynthesis and transport. Plant Physiol J, 2016, 52: 1128-1134 (in Chinese with English abstract). | |
| [28] | Birchler J A, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. Plant Cell, 2022, 34: 2466-2474. |
| [29] | Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Gong F, Phillips A L, Hedden P, Sun T P, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18: 3399-3414. |
| [30] | Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell, 2010, 22: 2680-2696. |
| [31] | Bao S, Hua C, Shen L, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Plant Cell, 2020, 62: 118-131. |
| [32] | Olimpieri I, Caccia R, Picarella M E, Pucci A, Santangelo E, Soressi G P, Mazzucato A. Constitutive co-suppression of the GA 20-oxidase1 gene in tomato leads to severe defects in vegetative and reproductive development. Plant Sci, 2011, 180: 496-503. |
| [33] | Willige B C, Ghosh S, Nill C, Zourelidou M, Dohmann E M N, Maier A, Schwechheimer C. The della domain of ga insensitive mediates the interaction with the ga insensitive dwarf1a gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19: 1209-1220. |
| [34] | Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Plant Cell, 2012, 3: 808. |
| [35] | Mateos J L, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fornara F, Schneeberger K, Krajewski P, Coupland G. Combinatorial activities of short vegetative phase and flowering locus c define distinct modes of flowering regulation in Arabidopsis. Plant Cell, 2015, 16: 31. |
| [36] | Hu J, Su H L, Cao H, Wei H B, Fu X K, Jiang X M, Song Q, He X H, Xu C Z, Luo K M. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. Plant Cell, 2022, 34: 2688-2707. |
| [37] | Schneider-Belhaddad F, Kolattukudy P. Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. Arch Biochem Biophys, 2000, 377: 341-349. |
| [38] | Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F. CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol, 2009, 150: 1831-1843. |
| [1] | 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1和ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329. |
| [2] | 王彬, 蒙姜宇, 邱浩良, 贺亚军, 钱伟. 甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析[J]. 作物学报, 2025, 51(8): 2100-2110. |
| [3] | 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990. |
| [4] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
| [5] | 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408. |
| [6] | 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究[J]. 作物学报, 2025, 51(5): 1189-1197. |
| [7] | 方应浩, 周波, 陈茹梅, 杨文竹, 秦慧民. 基于RNA-seq和PER-seq联合分析探究ZmHDZ6表达调控网络[J]. 作物学报, 2025, 51(4): 958-968. |
| [8] | 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899. |
| [9] | 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675. |
| [10] | 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567. |
| [11] | 胡志康, 舒雨, 王会, 杨莹莹, 廖俊宇, 刘佳, 成洪涛, 郭晨, 张园园, 刘胜毅, 胡琼, 梅德圣, 李超. 甘蓝型油菜苗期耐碱性种质综合鉴定与评价[J]. 作物学报, 2025, 51(10): 2681-2692. |
| [12] | 王晨, 贺丹, 姚敏, 邱萍, 何昕, 熊兴华, 康雷, 刘忠松, 钱论文. 基于转录组分析鉴定甘蓝型油菜开花候选基因以及BnaCOR27功能验证[J]. 作物学报, 2025, 51(10): 2693-2704. |
| [13] | 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148. |
| [14] | 望嘉翔, 郁雪婷, 李梦桃, 麦伟涛, 陈新, 王文泉. MeLAZY1c基因调控木薯株型的初步研究[J]. 作物学报, 2024, 50(6): 1514-1524. |
| [15] | 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171. |
|
||