欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (11): 2971-2982.doi: 10.3724/SP.J.1006.2025.54025

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

MeERF6-MePAP2模块响应低温胁迫的分子机制研究

艾力1,2(), 李梦桃1,2, 卢发宝1,2, 刘晓晨1,2, 麦伟涛1,2, 周新成2,3,*(), 陈新2,3,*()   

  1. 1 海南大学热带农林学院, 海南海口 570228
    2 热带作物生物育种全国重点实验室 / 中国热带农业科学院热带生物技术研究所, 海南海口 571101
    3 中国热带农业科学院三亚研究院, 海南三亚 572025
  • 收稿日期:2025-02-21 接受日期:2025-07-09 出版日期:2025-11-12 网络出版日期:2025-07-14
  • 通讯作者: *周新成, E-mail: zhouxincheng@itbb.org.cn; 陈新, E-mail: chenxin@itbb.org.cn
  • 作者简介:E-mail: 18395321365@qq.com
  • 基金资助:
    热带作物生物育种全国重点实验室创新团队科研项目(NKLTCBCXTD07);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-11-HNCX)

Molecular mechanism of the MeERF6-MePAP2 module in response to low-temperature stress

AI Li1,2(), LI Meng-Tao1,2, LU Fa-Bao1,2, LIU Xiao-Chen1,2, MAI Wei-Tao1,2, ZHOU Xin-Cheng2,3,*(), CHEN Xin2,3,*()   

  1. 1 College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China
    2 National Key Laboratory of Tropical Crop Biological Breeding / Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
    3 Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, Hainan, China
  • Received:2025-02-21 Accepted:2025-07-09 Published:2025-11-12 Published online:2025-07-14
  • Contact: *E-mail: zhouxincheng@itbb.org.cn; E-mail: chenxin@itbb.org.cn
  • Supported by:
    National Key Laboratory of Tropical Crop Biotechnology Innovation Team Research Project(NKLTCBCXTD07);China Agriculture Research System of MOF and MARA(CARS-11-HNCX)

摘要:

以木薯品种SC124的自交一代分离群体为研究对象, 通过集团分离分析法(BSA)和基因组重测序, 定位并克隆了MYB类转录因子基因MePAP2。研究发现, MePAP2启动子区域存在一段84 bp的插入缺失, 该插入缺失与紫色叶柄和绿色叶柄性状的分离显著相关, 并与植株在低温环境下的生长势密切相关。进一步以MePAP2启动子为诱饵利用酵母单杂交试验, 筛选到AP2/ERF家族转录因子基因MeERF6, 并通过双荧光素酶试验和活体成像技术确定MeERF6能够直接结合MePAP2启动子并正向调控其转录活性。MeERF6在低温胁迫下的响应时间早于MePAP2, 且其在叶柄组织中的转录活性显著高于其他部位。本研究揭示了MeERF6-MePAP2模块在木薯低温胁迫响应中的分子调控机制, 为培育耐低温木薯新品种提供了重要的理论依据和基因资源。

关键词: 木薯, 低温胁迫, MePAP2, MeERF6, 酵母单杂

Abstract:

Using a segregating population derived from the self-pollination of the cassava variety SC124, we employed Bulked Segregant Analysis (BSA) combined with genome re-sequencing to map and clone the MYB-family transcription factor MePAP2. Genetic analysis revealed an 84 bp insertion-deletion (InDel) in the promoter region of MePAP2, which was significantly associated with the segregation of the purple/green petiole trait and correlated with plant growth vigor under low-temperature conditions. A yeast one-hybrid assay using the MePAP2 promoter as bait identified the AP2/ERF-family transcription factor MeERF6. Dual-luciferase reporter assays and in vivo imaging demonstrated that MeERF6 directly binds to the MePAP2 promoter and positively regulates its transcription. Notably, MeERF6 responded to low-temperature stress earlier than MePAP2, and its transcriptional activity was significantly higher in petiole tissue compared to other organs. Collectively, these findings elucidate a hierarchical regulatory pathway involving the MeERF6-MePAP2 module in cassava’s response to low-temperature stress, providing valuable genetic targets for the molecular breeding of cold-tolerant cassava varieties.

Key words: cassava, low-temperature stress, MePAP2, MeERF6, yeast one-hybrid

表1

本研究所用引物"

引物名称
Primer name
上游引物
Forward primer (5′-3′)
下游引物
Reverse primer (5′-3′)
MePAP2-PCR
MePAP2-pAbAi
CAAGTTGGAGGGTCTTAGCTTGT
CTTGAATTCGAGCTCGGTACCACCCCTAACCATTTGCTTTCAT
GATGTCCAAGTTGGGTGGGTAT
AGCACATGCCTCGAGGTCGACTCCACTCCACACACTGCCTATTT
MeERF6-pGreen II62-sk CGCTCTAGAACTAGTGGATCCATGGCGGTAGAAACTGTAGCA GATAAGCTTGATATCGAATTCTCAGTTTGTCTTTGTCCGTTTGC
MePAP2-pGreen II0800 CTATAGGGCGAATTGGGTACCACC
CCTAACCATTTGCTTTCATC
AAGCTTATCGATACCGTCGACTCCACTCCACACACTGCCTATTT
qMeActin TCTTCTCAACTGAGGAGCTGCT CCTTCGTCTGGACCTTGCTG
qMeERF6 ATAAGAGACCCTAACCGGAAAG GCGTCATCTGTTACATCAGTATC

附图1

紫色叶柄与绿色叶柄植株的生长势"

图1

SC124自交一代的叶柄颜色、生长势和关键位点的插入缺失分子标记鉴定 A: SC124自交一代叶柄出现紫色与绿色分离。B: SC124自交一代心叶出现紫色与绿色分离。C: 紫色叶柄和绿色叶柄植株的平均茎粗, 误差线上小写字母代表5%显著水平下的差异性。D: 紫色叶柄和绿色叶柄植株的平均株高, 误差线上小写字母代表5%显著水平下的差异性。E: 紫色叶柄和绿色叶柄启动子区域序列差异比较, 红色框中表示紫色叶柄与绿色叶柄的差异序列。F: 根据紫色叶柄启动子区域进行引物设计示意图。G: 利用PCR技术验证紫色叶柄、绿色叶柄启动子区域差异位点。"

附表1

SC124自交分离群体株高及茎粗田间性状调查表"

株系编号
Strain number
绿色叶柄Green petiole 株系编号
Strain number
紫色叶柄Purple petiole
株高
Plant height (cm)
茎粗
Stem diameter (cm)
株高
Plant height (cm)
茎粗
Stem diameter (cm)
AS0570 170 2.6 AS0581 128 1.5
Lb-25 140 1.5 AS0590 112 1.5
AS0565 150 2.0 AS0589 126 1.6
Lb-26 146 1.7 AS0587 167 1.9
AS0547 105 1.3 AS0585 189 1.7
AS0546 115 1.5 AS0583 152 1.9
AS0545 162 2.1 AS0554 174 1.7
Lb-32 93 1.6 AS0557 140 2.4
AS0560 108 1.0 Zb-13 180 2.0
AS0550 83 1.5 AS0568 177 2.0
AS0258 82 1.5 AS0535 110 1.5
AS0265 130 2.7 AS0540 150 2.0
AS0278 166 2.2 AS0138 180 2.1
AS0300 90 1.5 AS0505 130 1.9
Lb-35 153 1.9 AS0533 141 2.0
Lb-41 80 1.0 AS0192 127 1.7
Zb-22 189 2.2 AS0751 166 2.4
AS0161 92 1.3 AS002 115 1.9
AS0261 140 1.5 AS0768 190 2.0
AS0299 146 1.7 AS0549 114 1.6
AS0760 180 2.3 AS0543 187 2.2
AS0295 93 1.1 AS0060 165 1.9
AS0197 130 1.9 AS0553 112 1.6
AS0584 130 1.5 AS0566 155 2.0
AS0688 75 1.0 Zb-34 175 2.1
AS0694 140 1.5 AS0563 200 2.0
AS0576 125 1.7 AS0558 146 1.7
AS0201 176 1.9 AS0561 186 2.4
AS0136 164 2.0 AS0562 162 2.1
AS0249 160 1.7 AS0426 133 1.4
AS0245 124 1.7 AS0255 172 1.8
AS0458 86 1.2 SC0274 100 2.1
AS0242 75 0.9 Zb-48 118 1.3
AS0019 118 1.3 AS0092 168 2.1
AS0230 107 1.3 AS0209 121 1.8
AS0752 82 1.6 AS022 155 2.1
AS0188 100 1.0 AS0190 100 1.7
AS0687 90 1.1 AS0216 125 1.8
AS0059 140 1.9 AS0549 160 1.8
AS0062 57 0.7 AS0681 140 1.7
AS0342 73 0.9 Zb-46 127 1.6
AS0224 43 0.7 AS0104 160 2.7
AS0276 120 1.8 AS0053 197 2.5
AS0273 87 2.0 AS0514 168 2.4
AS0287 122 1.6 AS0080 167 1.8
AS0286 133 1.9 Zb-27 138 1.6
AS0269 100 1.6 AS0532 124 1.5
Lb-15 180 2.3 Zb-29 120 1.3
Lb-37 170 1.9 AS0081 70 1.3

图2

MePAP2特性分析 A: MePAP2与10种代表性促进花青素合成的植物MYB转录因子的蛋白序列系统发育分析。其他物种的登录号为: AtPAP1 (NP_176057.1)、AtPAP2 (NP_176813.1)、AtMYB113 (NP_176811.1)、FaMYB10 (USN17647.1)、MdMYB9 (NP_001280749.1)、VvMYBA1 (XP_010664911.1)、VvMYB5b (NP_001267854.1)、VvMYB114 (XP_034707784.1)、MdMYB11 (NP_001280958.1)。B: MePAP2与其他物种同源蛋白的序列比对。灰色方框代表R2结构域, 黑色方框代表R3结构域, 红色框表示bHLH相互作用基序。"

图3

MeERF6的筛选与鉴定 A: 绿色叶柄、紫色叶柄酵母单杂交AbA背景浓度筛选。B: 绿色叶柄、紫色叶柄酵母菌落划线纯化鉴定。C: 使用保守结构域在线预测网站Smart对MeERF6保守结构域进行预测。D: MeERF6蛋白在烟草中的亚细胞定位, 标尺为50 μm。"

图4

MeERF6和MePAP2响应低温处理的表达谱 A: MePAP2在4℃低温处理下柄、茎、叶3个不同组织部位的转录活性分析, 误差线上小写字母代表5%显著水平下的差异性。B: MeERF6在4℃低温处理下柄、茎、叶3个不同组织部位的转录活性分析, 误差线上小写字母代表5%显著水平下的差异性。"

图5

酵母单杂、双荧光素酶测定、活体成像3种技术验证启动子与转录因子互作 A: 酵母单杂交点对点试验验证MeERF6与MePAP2pro在酵母体内存在相互作用。B: 活体成像(LCA)试验验证MeERF6与MePAP2绿色叶柄启动子区在烟草体内存在互作, MePAP2pro + MeERF6为试验组。C: 活体成像(LCA)试验验证MeERF6与MePAP2紫色叶柄启动子区在烟草体内存在互作, MePAP2pro + MeERF6为试验组。D: 双荧光素酶测定明确MeERF6对MePAP2绿色叶柄与紫色叶柄启动子区的调控方式, MePAP2pro + MeERF6为试验组, 试验数据取3次重复平均值, 误差线上小写字母代表5%显著水平下的差异性。"

[1] 甘秀芹, 韦本辉, 陆柳英, 申章佑, 宁秀呈, 胡泊, 李艳英, 吴延勇, 刘斌. 广西木薯杂交选育系列株系GW08研究初报. 广东农业科学, 2011, 38(21): 16-17.
Gan X Q, Wei B H, Lu L Y, Shen Z Y, Ning X C, Hu P, Li Y Y, Wu Y Y, Liu B. Preliminary study on series single plant of GW08 of cassava crossbreeding in Guangxi. Guangdong Agric Sci, 2011, 38(21): 16-17 (in Chinese with English abstract).
[2] 庞祥宇. 木薯IAA/ARF基因家族预测、表达及功能分析. 广西大学硕士学位论文, 广西南宁, 2019.
Pang X Y. Prediction, Expression and Functional Analysis of Cassava IAA/ARF Gene Family. MS Thesis of Guangxi University, Nanning, Guangxi, China, 2019 (in Chinese with English abstract).
[3] 邢谷杨. 我国主要热带香料植物科研和生产概述. 热带农业科学, 2000, 20(3): 43-48.
Xing G Y. Summary of scientific research and production of main tropical perfume plants in China. Trop Agric Sci, 2000, 20(3): 43-48 (in Chinese).
[4] 于晓玲, 李文彬, 李智博, 阮孟斌. 木薯MeMYC2.2基因耐低温功能研究. 生物技术通报, 2023, 39(1): 224-231.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0461
Yu X L, Li W B, Li Z B, Ruan M B. Cold resistance function analysis of cassava MeMYC2.2. Biotechnol Bull, 2023, 39(1): 224-231 (in Chinese with English abstract).
[5] Marino D, Andrio E, Danchin E G J, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N. A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytol, 2011, 189: 580-592.
[6] Li X L, Meng D, Li M J, Zhou J, Yang Y Z, Zhou B B, Wei Q P, Zhang J K. Transcription factors MhDREB2A/MhZAT10 play a role in drought and cold stress response crosstalk in apple. Plant Physiol, 2023, 192: 2203-2220.
[7] Zhou L, He Y J, Li J, Liu Y, Chen H Y. CBFs function in anthocyanin biosynthesis by interacting with MYB113 in eggplant (Solanum melongena L.). Plant Cell Physiol, 2020, 61: 416-426.
doi: 10.1093/pcp/pcz209 pmid: 31725150
[8] Yang X H, Wang J R, Xia X Z, Zhang Z Q, He J, Nong B X, Luo T P, Feng R, Wu Y Y, Pan Y H, et al. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. Plant J, 2021, 107: 198-214.
[9] 赵东鸣. 拟南芥AtGLKs调控花青素合成的分子机制研究. 江西农业大学硕士学位论文, 江西南昌, 2022.
Zhao D M. The Molecular Regulatory Mechanism of Anthocyanin Biosynthesis by AtGLKs in Arabidopsis thaliana. MS Thesis of Jiangxi Agricultural University, Nanchang, Jiangxi, China, 2022 (in Chinese with English abstract).
[10] Payne C T, Zhang F, Lloyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 2000, 156: 1349-1362.
doi: 10.1093/genetics/156.3.1349 pmid: 11063707
[11] Xing M H, Xin P M, Wang Y T, Han C Y, Lei C B, Huang W Y, Zhang Y P, Zhang X Y, Cheng K, Zhang X. A negative feedback regulatory module comprising R3-MYB repressor MYBL2 and R2R3-MYB activator PAP1 fine-tunes high light-induced anthocyanin biosynthesis in Arabidopsis. J Exp Bot, 2024, 75: 7381-7400.
[12] 胡彦如, 黄兴连, 叶静文. 植物花青素合成及其调控因素研究进展. 生命科学研究, 2024, 28: 493-502.
Hu Y R, Huang X L, Ye J W. Research progress of anthocyanin synthesis and regulatory factors in plants. Life Sci Res, 2024, 28: 493-502 (in Chinese with English abstract).
[13] Huang C B, Zhao T, Li J H, Wang L, Tang Y J, Wang Y J, Li Y, Zhang C H. Glutathione transferase VvGSTU60 is essential for proanthocyanidin accumulation and cooperates synergistically with MATE in grapes. Plant J, 2025, 121: 1-17.
[14] Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie A R. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem, 2013, 72: 21-34.
[15] 孙毅. 拟南芥GST蛋白TT19介导细胞内花青素转运的机理与镁离子转运蛋白MGT10调节光系统II活性的研究. 中国科学院大学博士学位论文, 北京, 2013.
Sun Y. Characterization of the Role of a GST Protein TRANSPARENT TESTA 19 in Intracellular Anthocyanin Transport in Arabidopsis, and Functional Analysis of a Magnesium Transporter MAGNESIUM TRANSPORT 10 in Regulating Photosystem II Activity in Arabidopsis. PhD Dissertation of University of Chinese Academy of Sciences, Beijing, China, 2013 (in Chinese with English abstract).
[16] 肖玉洁, 李泽明, 易鹏飞, 胡日生, 张先文, 朱列书. 转录因子参与植物低温胁迫响应调控机理的研究进展. 生物技术通报, 2018, 34(12): 1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0240
Xiao Y J, Li Z M, Yi P F, Hu R S, Zhang X W, Zhu L S. Research progress on response mechanism of transcription factors involved in plant cold stress. Biotechnol Bull, 2018, 34(12): 1-9 (in Chinese with English abstract).
[17] Zlobin N, Lebedeva M, Monakhova Y, Ustinova V, Taranov V. An ERF 121 transcription factor from Brassica oleracea is a target for the conserved TAL-effectors from different Xanthomonas campestris pv. campestris strains. Mol Plant Pathol, 2021, 22: 618-624.
[18] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
Yue M F, Zhang C, Wu Z Y. Research progress in the structural and functional analysis of plant transcription factor AP2/ERF protein family. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract).
[19] Yin F L, Zeng Y L, Ji J Y, Wang P J, Zhang Y F, Li W H. The halophyte Halostachys caspica AP2/ERF transcription factor HcTOE3 positively regulates freezing tolerance in Arabidopsis. Front Plant Sci, 2021, 12: 638788.
[20] Huang T D, Xin S C, Fang Y J, Chen T, Chang J, Ko N C K, Huang H S, Hua Y W. Use of a novel R2R3-MYB transcriptional activator of anthocyanin biosynthesis as visual selection marker for rubber tree (Hevea brasiliensis) transformation. Ind Crops Prod, 2021, 174: 114225.
[21] Zu X F, Luo L L, Wang Z, Gong J, Yang C, Wang Y, Xu C H, Qiao X H, Deng X, Song X W, et al. A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice. Nat Commun, 2023, 14: 6789.
doi: 10.1038/s41467-023-42269-4 pmid: 37880207
[22] Li N, Wu H, Ding Q Q, Li H H, Li Z F, Ding J, Li Y. The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato. Funct Integr Genomics, 2018, 18: 341-353.
[23] Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol, 2013, 199: 639-649.
doi: 10.1111/nph.12291 pmid: 24010138
[24] Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot, 2011, 62: 2465-2483.
doi: 10.1093/jxb/erq442 pmid: 21278228
[25] Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon- induced mutations in grape skin color. Science, 2004, 304: 982.
doi: 10.1126/science.1095011 pmid: 15143274
[26] Xie S, Lei Y J, Chen H W, Li J N, Chen H Z, Zhang Z W. R2R3- MYB transcription factors regulate anthocyanin biosynthesis in grapevine vegetative tissues. Front Plant Sci, 2020, 11: 527.
[27] Zhu Y F, Zhu G T, Xu R, Jiao Z X, Yang J W, Lin T, Wang Z, Huang S W, Chong L, Zhu J K. A natural promoter variation of SlBBX31 confers enhanced cold tolerance during tomato domestication. Plant Biotechnol J, 2023, 21: 1033-1043.
[28] Sun X M, Xiong H Y, Jiang C H, Zhang D M, Yang Z L, Huang Y P, Zhu W B, Ma S S, Duan J Z, Wang X, et al. Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun, 2022, 13: 4265.
[29] Zhang Y, Ming R H, Khan M, Wang Y, Dahro B, Xiao W, Li C L, Liu J H. ERF9 of Poncirus trifoliata (L.) Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene. Plant Biotechnol J, 2022, 20: 183-200.
[30] 王欣悦, 赵楠, 王嫱, 杨森, 邵庆一, 曹佳昂, 王雪松, 刘丽杰. ERF转录因子在植物逆境响应中的作用. 高师理科学刊, 2025, 45(2): 63-67.
Wang X Y, Zhao N, Wang Q, Yang S, Shao Q Y, Cao J A, Wang X S, Liu L J. Role of ERF transcription factors in plant stress response. J Sci Teach Coll Univ, 2025, 45(2): 63-67 (in Chinese with English abstract).
[31] Tian Y, Zhang H W, Pan X W, Chen X L, Zhang Z J, Lu X Y, Huang R F. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res, 2011, 20: 857-866.
doi: 10.1007/s11248-010-9463-9 pmid: 21136294
[32] Khan M, Hu J B, Dahro B, Ming R H, Zhang Y, Wang Y, Alhag A, Li C L, Liu J H. ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS. Plant J, 2021, 108: 705-724.
[33] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X H, Agarwal M, Zhu J K. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003, 17: 1043-1054.
[1] 马娟娥, 姚有华, 姚晓华, 吴昆仑, 崔永梅. 青稞HvERF039基因的克隆及功能研究[J]. 作物学报, 2025, 51(9): 2341-2357.
[2] 侯天钰, 杜孝敬, 赵志强, 热依木·艾尼瓦尔, 伊达耶图拉·阿不拉, 布哈丽且木·阿不力孜, 袁杰, 张燕红, 王奉斌. 粳稻品种芽期耐冷性评价及耐冷种质筛选[J]. 作物学报, 2025, 51(3): 812-822.
[3] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[4] 望嘉翔, 郁雪婷, 李梦桃, 麦伟涛, 陈新, 王文泉. MeLAZY1c基因调控木薯株型的初步研究[J]. 作物学报, 2024, 50(6): 1514-1524.
[5] 王连南, 李远超, 余乃通, 麦伟涛, 李亚军, 陈新. MeTCP3a转录因子在木薯叶片发育中的功能鉴定[J]. 作物学报, 2024, 50(11): 2720-2730.
[6] 郁雪婷, 李可, 李梦桃, 鲍茹雪, 陈新, 王文泉. 木薯蛋白激酶MeSnRK2.12与转录因子MebHLH1的互作鉴定及其表达分析[J]. 作物学报, 2023, 49(9): 2594-2600.
[7] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[8] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[9] 陈会鲜, 梁振华, 黄珍玲, 韦婉羚, 张秀芬, 杨海霞, 李恒锐, 何文, 李天元, 兰秀, 阮丽霞, 蔡兆琴, 农君鑫. 木薯花性别分化关键时期的转录组分析及雌花分化相关候选基因的筛选[J]. 作物学报, 2023, 49(12): 3250-3260.
[10] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[11] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 李相辰, 沈旭, 周新成, 陈新, 王海燕, 王文泉. 木薯PEPC基因家族成员鉴定及表达分析[J]. 作物学报, 2022, 48(12): 3108-3119.
[14] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[15] 王珍, 张晓莉, 孟晓静, 姚梦楠, 缪文杰, 袁大双, 朱冬鸣, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜丝裂原活化蛋白激酶7基因(BnMAPK7)上游调控因子的鉴定[J]. 作物学报, 2021, 47(12): 2379-2393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!