欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (11): 2983-2995.doi: 10.3724/SP.J.1006.2025.55029

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜磷转运蛋白BnaPT48的功能研究

张雯(), 李玉, 王创, 石磊, 丁广大()   

  1. 华中农业大学资源与环境学院 / 微量元素研究中心 / 农业农村部长江中下游耕地保育重点实验室, 湖北武汉 430070
  • 收稿日期:2025-04-18 接受日期:2025-08-13 出版日期:2025-11-12 网络出版日期:2025-08-19
  • 通讯作者: *丁广大, E-mail: dgd@mail.hzau.edu.cn
  • 作者简介:E-mail: zhangw@webmail.hzau.edu.cn
  • 基金资助:
    农业生物育种国家科技重大专项(2023ZD04072)

Functional study of the phosphate transporter protein BnaPT48 in Brassica napus

ZHANG Wen(), LI Yu, WANG Chuang, SHI Lei, DING Guang-Da()   

  1. College of Resources and Environment, Huazhong Agricultural University / Microelement Research Center / Key Laboratory of Arable Land Conservation in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2025-04-18 Accepted:2025-08-13 Published:2025-11-12 Published online:2025-08-19
  • Contact: *E-mail: dgd@mail.hzau.edu.cn
  • Supported by:
    National Key R&D Program for Agricultural Biological Breeding(2023ZD04072)

摘要:

磷是植物生长发育必需的大量营养元素之一。油菜作为我国重要的油料作物, 具有需磷多且对缺磷敏感的特性。本研究以在甘蓝型油菜根系中表达丰度高且受缺磷诱导的基因BnaPT48为研究对象, 通过分析其基因表达模式、蛋白亚细胞定位及遗传材料的表型等, 揭示该基因在油菜磷吸收中的作用。研究发现BnaPT48定位于细胞膜, 且在根系各组织中受缺磷显著诱导表达。BnaPT48能回补拟南芥磷吸收突变体(atpt1/2)的表型, 表明BnaPT48能促进植物的磷吸收。在拟南芥中过表达BnaPT48能促进植株在正常磷和低磷条件下的生长。在油菜中过表达BnaPT48, 低磷处理后显著增加地上部干重, 降低子叶中的无机磷浓度, 促进子叶中叶绿素的降解和子叶衰老, 根系无机磷浓度在正常磷时显著增加。本研究揭示了BnaPT48在调控植物磷吸收中的作用, 为甘蓝型油菜磷效率的遗传改良提供了理论基础和基因资源。

关键词: 甘蓝型油菜, BnaPT48, 转运蛋白, 低磷胁迫, 磷浓度, 磷吸收

Abstract:

Phosphorus (P) is an essential macronutrient required for plant growth and development. Rapeseed (Brassica napus), a major oilseed crop in China, is characterized by a high demand for P and strong sensitivity to P deficiency. This study investigates the gene BnaPT48, which is highly expressed in the root system of Brassica napus and is strongly induced under P-deficient conditions. Through analyses of its expression pattern, protein subcellular localization, and phenotypes of transgenic materials, the role of BnaPT48 in P uptake was elucidated. BnaPT48 was found to localize to the plasma membrane and was significantly upregulated by P deficiency in various root tissues. The BnaPT48 protein complemented the P uptake defect of the Arabidopsis thaliana mutant atpt1/2, indicating its functional role in enhancing P acquisition. Overexpression of BnaPT48 in A. thaliana promoted plant growth under both normal and low P conditions. In rapeseed, overexpression of BnaPT48 significantly increased the shoot dry weight under low P treatment, reduced inorganic P concentration in cotyledons, accelerated chlorophyll degradation and cotyledon senescence, and increased inorganic P accumulation in roots under normal P conditions. These findings reveal the function of BnaPT48 in regulating phosphate uptake and redistribution, and provide a theoretical foundation and genetic resource for improving P use efficiency in B. napus through genetic approaches.

Key words: Brassica napus, BnaPT48, transport protein, low phosphorus stress, P concentration, P absorption

表1

本研究中使用的引物序列"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
引物作用
Function of primers
BnaPT48-GFP-F ATCGATTCTAGAGCC ATGGCTGATAATCAGCAGCTAGGAG 构建亚细胞定位载体
Construct a subcellular localization vector
BnaPT48-GFP-R TTCTCCTTTGCCCAT GTTTCTTCCGGAGGTAG
BnaPT48p-GUS-F CAGGTCGACGGATCCATATCAACTTTATGGAAAGATGACAA 构建组织定位载体
Construct a tissue-specific targeting vector
BnaPT48p-GUS-R TAAGGGACTGACCACTTGCCTTCTTCTAGATTATCTACA
BnPT48OX-F CCCCCGGG ATGGCTGATAATCAGCAGCTAGGAG 构建过表达载体
Construct an overexpression vector
BnPT48OX-R GCGTCGAC TCAGTTTCTTCCGGAGGTAG
BnaPT48-qPCR-F TATTATTGGCGAATGAAGATGC 定量基因表达水平
Quantify gene expression levels
BnaPT48-qPCR-R CCTTGGAGAACAAGCCGTAG

图1

BnaPT48及其同源基因的进化及序列相似性分析 A: 系统发育关系分析; B: 氨基酸序列比对; C: 蛋白三维结构分析。Merge: AtPHT1;3和BnaPT48融合。"

图2

BnaPT48的时空表达模式 A: 正常磷和低磷处理下苗期根中BnaPT48表达分析(以正常磷处理0 h根部的表达量为对照); B: 正常磷(CK)和低磷(LP)处理下苗期地上部BnaPT48表达分析(以正常磷处理0 h地上部的表达量为对照); C: 苗期不同组织中BnaPT48表达模式分析(以正常磷处理0 h苗期不同组织的表达量为对照); D: 成熟期不同组织中BnaPT48表达模式分析(以正常磷处理0 h成熟期不同组织的表达量为对照; CK: 90 kg hm-2; LP: 15 kg hm-2)。FEL: 完全展开叶; CL: 茎生叶; IS: 花序茎; B: 花蕾; F: 花; Hu: 角果壳; S: 种子; Ca: 角果柄。苗期, CK: 1 mmol L-1 P; -P: 0 mmol L-1 P。数据表示为平均值±标准差(n = 3)。t检验。*、**、***分别表示在0.05、0.01和0.001水平差异显著。"

图3

BnaPT48蛋白的亚细胞定位和组织定位 A: BnaPT48蛋白的亚细胞定位; B: BnaPT48p::GUS的转基因材料GUS染色, a~g依次为正常磷(CK: 1 mmol L-1 P)条件下的根系(a), 低磷(LP: 5 μmol L-1 P)条件下的根系(b)、子叶(c)、真叶(d)、下胚轴(e)、花(f)和角果(g), a~b标尺为0.5 mm, c~g标尺为0.2 cm。"

图4

BnaPT48互补拟南芥磷吸收突变体atpt1/2材料在不同磷水平下的表型 A: 拟南芥回补材料的鉴定; B: 拟南芥过表达BnaPT48材料和野生型Col-0的长势; C: 正常磷和低磷条件下的鲜重; D: 正常磷和低磷条件下的无机磷浓度。t检验(Student’s t-test)。*、**、***分别表示在0.05、0.01和0.001水平差异显著。CK: 正常磷处理(625 μmol L-1 P); LP: 低磷处理(15 μmol L-1 P)。B图标尺为0.5 cm。以相同条件下的野生型Col-0为对照。"

图5

拟南芥过表达BnaPT48和野生型材料在不同磷水平下的表型 A: 拟南芥过表达BnaPT48材料的鉴定; B: 拟南芥过表达BnaPT48材料和野生型Col-0的长势; C: 根系和地上部鲜重; D: 根系和地上部干重; E: 根系和地上部无机磷浓度; F: 地上部和根系总磷浓度; G: 总根长; H: 根系总表面积; I: 地上部和根系磷累积量。数据表示为平均值±标准差(n = 3)。t检验(Student’s t-test)。*、**、***分别表示在0.05、0.01和0.001水平差异显著。CK: 正常磷处理(200 μmol L-1 P); LP: 低磷处理(5 μmol L-1 P)。B图标尺为3 cm。以相同条件下的野生型Col-0为对照。"

图6

油菜过表达BnaPT48和野生型材料在不同磷水平下的表型 A: 各材料在正常磷条件下的长势; B: 各材料在低磷条件下的长势; C: 油菜过表达BnaPT48材料的鉴定; D: 正常磷和低磷条件下的干重; E: 正常磷和低磷条件下的无机磷浓度; F: 地上部磷分配比例; G: 正常磷和低磷条件下的总磷浓度; H: 磷转运系数; I: 正常磷和低磷条件下的磷累积量。标尺= 5 cm。a代表子叶(cotyledon), b代表第1片真叶(leaf1)。数据表示为平均值±标准差(n = 3)。t检验, *、**、***分别表示在0.05、0.01和0.001水平差异显著。CK: 正常磷处理(1 mmol L-1 P); LP: 低磷处理(10 μmol L-1 P)。以相同条件下的野生型Col-0为对照。"

图7

过表达BnaPT48对油菜叶片叶绿素和类胡萝卜素含量的影响 A: 正常磷和低磷条件下的叶绿素a含量; B: 正常磷和低磷条件下的叶绿素b含量; C: 正常磷和低磷条件下的类胡萝卜素含量; D: 正常磷和低磷条件下的总叶绿素含量; E: 正常磷和低磷条件下的SPAD值。数据表示为平均值±标准差(n = 3), t检验。*、**、***分别表示在0.05、0.01和0.001水平差异显著。CK: 正常磷处理(1 mmol L-1 P); LP: 低磷处理(10 μmol L-1 P)。以相同条件下的野生型Col-0为对照。"

[1] 张俊伶. 植物营养学. 北京: 中国农业大学出版社, 2021.
Zhang J L. Plant Nutrition. Beijing: China Agricultural University Press, 2021 (in Chinese).
[2] Holford I C R. Soil phosphorus: its measurement, and its uptake by plants. Soil Res, 1997, 35: 227.
[3] Paz-Ares J, Puga M I, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: core signaling, crosstalks, and applied implications. Mol Plant, 2022, 15: 104-124.
[4] Wang Y, Wang F, Lu H, Liu Y, Mao C Z. Phosphate uptake and transport in plants: an elaborate regulatory system. Plant Cell Physiol, 2021, 62: 564-572.
doi: 10.1093/pcp/pcab011 pmid: 33508131
[5] Victor Roch G, Maharajan T, Ceasar S A, Ignacimuthu S. The role of PHT 1 family transporters in the acquisition and redistribution of phosphorus in plants. Crit Rev Plant Sci, 2019, 38: 171-198.
[6] Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996, 93: 10519-10523.
doi: 10.1073/pnas.93.19.10519 pmid: 8927627
[7] Shin H, Shin H S, Dewbre G R, Harrison M J. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J, 2004, 39: 629-642.
[8] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216: 23-37.
doi: 10.1007/s00425-002-0921-3 pmid: 12430011
[9] 董旭, 王雪, 石磊, 蔡红梅, 徐芳森, 丁广大. 植物磷转运子PHT1家族研究进展. 植物营养与肥料学报, 2017, 23: 799-810.
Dong X, Wang X, Shi L, Cai H M, Xu F S, Ding G D. Advances in plant PHT1 phosphate transporter family research. J Plant Nutr Fert, 2017, 23: 799-810 (in Chinese with English abstract).
[10] Sun S B, Gu M, Cao Y, Huang X P, Zhang X, Ai P H, Zhao J N, Fan X R, Xu G H. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol, 2012, 159: 1571-1581.
doi: 10.1104/pp.112.196345 pmid: 22649273
[11] Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[12] Li Y, Wang X, Zhang H, Wang S L, Ye X S, Shi L, Xu F S, Ding G D. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. PLoS One, 2019, 14: e0220374.
[13] Li Y, Wang X, Zhang H, Ye X S, Shi L, Xu F S, Ding G D. Phosphate transporter BnaPT37 regulates phosphate homeostasis in Brassica napus by changing its translocation and distribution in vivo. Plants, 2023, 12: 3362.
[14] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2019.04.001
[15] 李银水, 鲁剑巍, 廖星, 邹娟, 李小坤, 余常兵, 马常宝, 高祥照. 磷肥用量对油菜产量及磷素利用效率的影响. 中国油料作物学报, 2011, 33: 52-56.
Li Y S, Lu J W, Liao X, Zou J, Li X K, Yu C B, Ma C B, Gao X Z. Effect of phosphorus application rate on yield and fertilizer-phosphorus utilization efficiency in rapeseed. Chin J Oil Crop Sci, 2011, 33: 52-56 (in Chinese with English abstract).
[16] 付蓉, 袁久东, 胥婷婷, 徐倩, 张洋, 张荣, 田汇, 高亚军. 不同施磷量对春油菜产量和土壤磷素平衡的影响. 应用生态学报, 2021, 32: 906-912.
doi: 10.13287/j.1001-9332.202103.010
Fu R, Yuan J D, Xu T T, Xu Q, Zhang Y, Zhang R, Tian H, Gao Y J. Effects of different phosphorus application rates on spring rapeseed yield and soil phosphorus balance. Chin J Appl Ecol, 2021, 32: 906-912 (in Chinese with English abstract).
[17] Han B, Wang C, Wu T, Yan J J, Jiang A S, Liu Y, Luo Y, Cai H M, Ding G D, Dong X, et al. Identification of vacuolar phosphate influx transporters in Brassica napus. Plant Cell Environ, 2022, 45: 3338-3353.
[18] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[19] Han B, Yan J J, Wu T, Yang X Y, Wang Y J, Ding G D, John P H, Wang C, Xu F S, Wang S L, et al. Proteomics reveals the significance of vacuole Pi transporter in the adaptability of Brassica napus to Pi deprivation. Front Plant Sci, 2024, 15: 1340867.
[20] 邓素仁. 分泌型酸性磷酸酶OsPAP10a和OsPAP10c调控水稻缺磷适应性的机制研究. 华中农业大学博士学位论文, 湖北武汉, 2022.
Deng S R. Study on the Mechanism of Secretory Acid Phosphatase OsPAP10a and OsPAP10c Regulating the Adaptability of Rice to Phosphorus Deficiency. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[21] 高俊凤. 植物生理学实验指导. 北京: 北京高等教育出版社, 2006.
Gao J F. Laboratory Manual for Plant Physiology. Beijing: Beijing Higher Education Press, 2006 (in Chinese).
[22] 王雪. 甘蓝型油菜响应低磷胁迫的转录组差异及PHT1磷转运蛋白家族解析. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Wang X. Transcriptome Differences of Brassica napus in Response to Low Phosphorus Stress and Analysis of PHT1 Phosphorus Transporter Family. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[23] Mudge S R, Rae A L, Diatloff E, Smith F W. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J, 2002, 31: 341-353.
doi: 10.1046/j.1365-313x.2002.01356.x pmid: 12164813
[24] Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, 2005, 10: 22-29.
doi: 10.1016/j.tplants.2004.12.003 pmid: 15642520
[25] Qin L, Guo Y X, Chen L Y, Liang R K, Gu M, Xu G H, Zhao J, Walk T, Liao H. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One, 2012, 7: e47726.
[26] Ayadi A, David P, Arrighi J F, Chiarenza S, Thibaud M C, Nussaume L, Marin E. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling. Plant Physiol, 2015, 167: 1511-1526.
doi: 10.1104/pp.114.252338 pmid: 25670816
[27] Wang X F, Wang Y F, Piñeros M A, Wang Z Y, Wang W X, Li C Y, Wu Z C, Kochian L V, Wu P. Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Plant Cell Environ, 2014, 37: 1159-1170.
[28] Chien P S, Chao Y T, Chou C H, Hsu Y Y, Chiang S F, Tung C W, Chiou T J. Phosphate transporter PHT1;1 is a key determinant of phosphorus acquisition in Arabidopsis natural accessions. Plant Physiol, 2022, 190: 682-697.
[29] Dai C R, Dai X L, Qu H Y, Men Q, Liu J Y, Yu L, Gu M, Xu G H. The rice phosphate transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther development. Plant Physiol, 2022, 188: 2272-2288.
doi: 10.1093/plphys/kiac030 pmid: 35088867
[1] 王彬, 蒙姜宇, 邱浩良, 贺亚军, 钱伟. 甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析[J]. 作物学报, 2025, 51(8): 2100-2110.
[2] 郭腾达, 崔梦杰, 陈琳杰, 韩锁义, 郭敬坤, 吴晨迪, 付留洋, 黄冰艳, 董文召, 张新友. 花生磷脂酰肌醇转运蛋白基因AhSFH的克隆及其响应黄曲霉菌侵染的表达特征分析[J]. 作物学报, 2025, 51(6): 1489-1500.
[3] 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究[J]. 作物学报, 2025, 51(5): 1189-1197.
[4] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[5] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
[6] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[7] 巨建业, 杨柳, 陈浩, 康雷, 夏石头, 刘忠松. 单细胞核转录组分析揭示油菜种皮分化过程和种子颜色差异原因[J]. 作物学报, 2025, 51(11): 2860-2874.
[8] 胡志康, 舒雨, 王会, 杨莹莹, 廖俊宇, 刘佳, 成洪涛, 郭晨, 张园园, 刘胜毅, 胡琼, 梅德圣, 李超. 甘蓝型油菜苗期耐碱性种质综合鉴定与评价[J]. 作物学报, 2025, 51(10): 2681-2692.
[9] 曹志洋, 高丽锋, 姜东言, 王曙光, 杨进文, 贾继增, 李宁, 孙黛珍. 小麦苗期耐低磷相关基因位点的挖掘与候选基因分析[J]. 作物学报, 2025, 51(10): 2632-2651.
[10] 赵志文, 陈慧, 连玉杰, 陆涵, 曹旭东, 王帆, 喻梦璠, 张战辉, 汤继华, 陈晓阳. ZmMS13不同突变产生了gms1yems1166复等位玉米雄性不育系[J]. 作物学报, 2025, 51(10): 2595-2604.
[11] 王晨, 贺丹, 姚敏, 邱萍, 何昕, 熊兴华, 康雷, 刘忠松, 钱论文. 基于转录组分析鉴定甘蓝型油菜开花候选基因以及BnaCOR27功能验证[J]. 作物学报, 2025, 51(10): 2693-2704.
[12] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[13] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[14] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[15] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!