作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2595-2604.doi: 10.3724/SP.J.1006.2025.53023
赵志文(), 陈慧(
), 连玉杰, 陆涵, 曹旭东, 王帆, 喻梦璠, 张战辉, 汤继华, 陈晓阳(
)
ZHAO Zhi-Wen(), CHEN Hui(
), LIAN Yu-Jie, LU Han, CAO Xu-Dong, WANG Fan, YU Meng-Fan, ZHANG Zhan-Hui, TANG Ji-Hua, CHEN Xiao-Yang(
)
摘要:
玉米雄性不育系的创制与应用是降低玉米杂交种制种成本、提高种子纯度的有效途径。本研究鉴定到2个玉米雄性核不育突变体gms1和yems1166, 表型分析表明突变体花药角质层结构异常, 小孢子在单核后期开始降解, 成熟期突变体无花粉粒形成。遗传分析表明2个突变体不育性状受细胞核隐性单基因控制。通过图位克隆的策略将GMS1和YEMS1166基因分别定位于第5染色体23.52~26.09 Mb和24.86~30.95 Mb区间, 该区间包含已报道的脂类转运蛋白基因ZmMS13, 编码ABCG转运蛋白ZmABCG2a。基因测序结果显示gms1在ZmMS13基因第5外显子上有1个碱基的替换(TCA>TGA), 导致其翻译提前终止; 突变体yems1166在ZmMS13基因的第1外显子上有8个碱基的缺失, 导致其翻译提前终止。等位性测验进一步证明gms1和yems1166为ZmMS13的新等位突变体。本研究鉴定到2个新的ZmMS13基因等位突变体, 为玉米雄性不育化杂交制种提供了新的种质资源。
[1] | Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat Commun, 2023, 14: 2637. |
[2] |
Xiao Y J, Jiang S Q, Cheng Q, Wang X Q, Yan J, Zhang R Y, Qiao F, Ma C, Luo J Y, Li W Q, et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol, 2021, 22: 148.
doi: 10.1186/s13059-021-02370-7 pmid: 33971930 |
[3] |
郭瑶晴, 孙晓靖, 连玉杰, 陈慧, 孙华越, 张雪海, 汤继华, 陈晓阳. 玉米雄性不育突变体x50的基因定位与遗传分析. 华北农学报, 2023, 38(1): 17-22.
doi: 10.7668/hbnxb.20193481 |
Guo Y Q, Sun X J, Lian Y J, Chen H, Sun H Y, Zhang X H, Tang J H, Chen X Y. Gene mapping and genetic analysis of male sterile mutant x50 in maize. Acta Agric Boreali-Sin, 2023, 38(1): 17-22 (in Chinese with English abstract). | |
[4] |
Wan X Y, Wu S W, Li X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era. Mol Plant, 2021, 14: 531-534.
doi: 10.1016/j.molp.2021.02.004 pmid: 33582376 |
[5] | 付志远, 秦永田, 汤继华. 主要作物光温敏核雄性不育基因的研究进展与应用. 中国生物工程杂志, 2018, 38(1): 115-125. |
Fu Z Y, Qin Y T, Tang J H. Reviews of photo-or/and thermo- sensitive genic male sterile gene in major crops. China Biotechnol, 2018, 38(1): 115-125 (in Chinese with English abstract). | |
[6] | 闫米格, 武岩军, 任丽萍, 李素玲. 利用雄性不育系培育玉米新品种. 山西农业科学, 2011, 39: 519-521. |
Yan M G, Wu Y J, Ren L P, Li S L. Study on corn hybrid selection with male sterile line. J Shanxi Agric Sci, 2011, 39: 519-521 (in Chinese with English abstract). | |
[7] |
Liu X Z, Jiang Y L, Wu S W, Wang J, Fang C W, Zhang S W, Xie R R, Zhao L N, An X L, Wan X Y. The ZmMYB84-ZmPKSB regulatory module controls male fertility through modulating anther cuticle-pollen exine trade-off in maize anthers. Plant Biotechnol J, 2022, 20: 2342-2356.
doi: 10.1111/pbi.13911 pmid: 36070225 |
[8] | 王梦龙, 翁灵灵, 吴淑英, 许泽芬, 戴天佑, 彭小群. ABCG转运蛋白参与植物雄性育性调控的研究进展. 植物科学学报, 2024, 42: 387-394. |
Wang M L, Weng L L, Wu S Y, Xu Z F, Dai T Y, Peng X Q. Research progress on the involvement of ABCG transporters in the regulation of plant male fertility. Plant Sci J, 2024, 42: 387-394 (in Chinese with English abstract). | |
[9] |
Jiang Y L, An X L, Li Z W, Yan T W, Zhu T T, Xie K, Liu S S, Hou Q C, Zhao L N, Wu S W, et al. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnol J, 2021, 19: 1769-1784.
doi: 10.1111/pbi.13590 pmid: 33772993 |
[10] | Hou Q C, An X L, Ma B, Wu S W, Wei X, Yan T W, Zhou Y, Zhu T T, Xie K, Zhang D F, et al. ZmMS1/ZmLBD30-orchestrated transcriptional regulatory networks precisely control pollen exine development. Mol Plant, 2023, 16: 1321-1338. |
[11] | Zhang S M, Wu S W, Niu C F, Liu D C, Yan T W, Tian Y H, Liu S S, Xie K, Li Z W, Wang Y B, et al. ZmMs25 encoding a plastid-localized fatty acyl reductase is critical for anther and pollen development in maize. J Exp Bot, 2021, 72: 4298-4318. |
[12] | Somaratne Y, Tian Y H, Zhang H, Wang M M, Huo Y Q, Cao F G, Zhao L, Chen H B. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J, 2017, 90: 96-110. |
[13] | Djukanovic V, Smith J, Lowe K, Yang M Z, Gao H R, Jones S, Nicholson M G, West A, Lape J, Bidney D, et al. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J, 2013, 76: 888-899. |
[14] |
Chen X Y, Zhang H, Sun H Y, Luo H B, Zhao L, Dong Z B, Yan S S, Zhao C, Liu R Y, Xu C Y, et al. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol, 2017, 173: 307-325.
doi: 10.1104/pp.16.00629 pmid: 28049856 |
[15] |
Zhu T T, Li Z W, An X L, Long Y, Xue X F, Xie K, Ma B, Zhang D F, Guan Y J, Niu C F, et al. Normal structure and function of Endothecium chloroplasts maintained by ZmMs33-mediated lipid biosynthesis in tapetal cells are critical for anther development in maize. Mol Plant, 2020, 13: 1624-1643.
doi: 10.1016/j.molp.2020.09.013 pmid: 32956899 |
[16] | An X L, Dong Z Y, Tian Y H, Xie K, Wu S W, Zhu T T, Zhang D F, Zhou Y, Niu C F, Ma B, et al. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant, 2019, 12: 343-359. |
[17] | Huo Y Q, Pei Y R, Tian Y H, Zhang Z G, Li K, Liu J, Xiao S L, Chen H B, Liu J. IRREGULAR POLLEN EXINE2 encodes a GDSL lipase essential for male fertility in maize. Plant Physiol, 2020, 184: 1438-1454. |
[18] | Xu Q L, Yang L, Kang D, Ren Z J, Liu Y J. Maize MS2 encodes an ATP-binding cassette transporter that is essential for anther development. Crop J, 2021, 9: 1301-1308. |
[19] | Fang C W, Wu S W, Niu C F, Hou Q C, An X L, Wei X, Zhao L N, Jiang Y L, Liu X Z, Wan X Y. Triphasic regulation of ZmMs13 encoding an ABCG transporter is sequentially required for callose dissolution, pollen exine and anther cuticle formation in maize. J Adv Res, 2023, 49: 15-30. |
[20] | Niu Q K, Shi Z W, Zhang P, Su S, Jiang B, Liu X W, Zhao Z F, Zhang S Z, Huang Q, Li C, et al. ZmMS39 encodes a callose synthase essential for male fertility in maize (Zea mays L.). Crop J, 2023, 11: 394-404. |
[21] | Hu M J, Li Y F, Zhang X B, Song W B, Jin W W, Huang W, Zhao H M. Maize sterility gene DRP1 encodes a desiccation-related protein that is critical for Ubisch bodies and pollen exine development. J Exp Bot, 2022, 73: 6800-6815. |
[22] | An X L, Zhang S W, Jiang Y L, Liu X Z, Fang C W, Wang J, Zhao L N, Hou Q C, Zhang J, Wan X Y. CRISPR/Cas9-based genome editing of 14 lipid metabolic genes reveals a sporopollenin metabolon ZmPKSB-ZmTKPR1-1/-2 required for pollen exine formation in maize. Plant Biotechnol J, 2024, 22: 216-232. |
[23] | Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, et al. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16: 459-471. |
[24] | Chen X Y, Li Y F, Sun H Y, An X L, Tang J H. Molecular mechanisms of male sterility in maize. Plant Mol Biol Rep, 2024, 42: 483-491. |
[25] | 田有辉, 万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法. 中国生物工程杂志, 2018, 38(1): 88-99. |
Tian Y H, Wan X Y. Cytobiology and molecular genetics research methods on maize anther development. China Biotechnol, 2018, 38(1): 88-99 (in Chinese with English abstract). | |
[26] | Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B L, Scolaro E, Collinson S, Glassman K, et al. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15: 942-952. |
[27] | Jiang Y L, Li Z W, Liu X Z, Zhu T T, Xie K, Hou Q C, Yan T W, Niu C F, Zhang S W, Yang M B, et al. ZmFAR1 and ZmABCG26 regulated by microRNA are essential for lipid metabolism in maize anther. Int J Mol Sci, 2021, 22: 7916. |
[28] | 吴锁伟, 方才臣, 邓联武, 万向元. 玉米隐性核雄性不育基因研究进展及其育种应用途径分析. 分子植物育种, 2012, 10: 1001-1011. |
Wu S W, Fang C C, Deng L W, Wan X Y. Research progress on maize recessive genic male sterility gene and its utilization strategies in maize breeding program. Mol Plant Breed, 2012, 10: 1001-1011 (in Chinese with English abstract). | |
[29] | Zhao G C, Shi J X, Liang W Q, Zhang D B. ATP binding cassette G transporters and plant male reproduction. Plant Signal Behav, 2016, 11: e1136764. |
[30] |
汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望. 中国水稻科学, 2024, 38: 463-474.
doi: 10.16819/j.1001-7216.2024.231008 |
Wang Y C, Zhu B S, Zhou L, Zhu J, Yang Z N. Sterility mechanism of photoperiod/thermo-sensitive genic male sterile lines and development and prospects of two-line hybrid rice. Chin J Rice Sci, 2024, 38: 463-474 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2024.231008 |
|
[31] | 马萌. 玉米细胞核雄性不育基因定位及克隆的研究进展. 农业科学, 2020, 10: 332-341. |
Ma M. Advances in research on the location and cloning of maize nuclear male sterility gene. Hans J Agric Sci, 2020, 10: 332-341 (in Chinese with English abstract). | |
[32] | Kirschner G K. Another piece in the puzzle of pollen development. Plant J, 2022, 111: 1507-1508. |
[33] |
Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321-342.
doi: S1674-2052(19)30020-6 pmid: 30690174 |
[34] | Zhu T T, Wu S W, Zhang D F, Li Z W, Xie K, An X L, Ma B, Hou Q C, Dong Z Y, Tian Y H, et al. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene. Theor Appl Genet, 2019, 132: 2137-2154. |
[35] | An X L, Ma B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, et al. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117: 23499-23509. |
[1] | 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526. |
[2] | 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1和ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329. |
[3] | 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306. |
[4] | 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340. |
[5] | 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466. |
[6] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. |
[7] | 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163. |
[8] | 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990. |
[9] | 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837. |
[10] | 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900. |
[11] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
[12] | 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617. |
[13] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
[14] | 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581. |
[15] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
|