欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2595-2604.doi: 10.3724/SP.J.1006.2025.53023

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

ZmMS13不同突变产生了gms1yems1166复等位玉米雄性不育系

赵志文(), 陈慧(), 连玉杰, 陆涵, 曹旭东, 王帆, 喻梦璠, 张战辉, 汤继华, 陈晓阳()   

  1. 河南农业大学农学院 / 小麦玉米两熟高效生产全国重点实验室, 河南郑州 450046
  • 收稿日期:2025-04-15 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-15
  • 通讯作者: *陈晓阳, E-mail: cxy759020@henau.edu.cn
  • 作者简介:赵志文, E-mail: zzw16692520062@163.com;
    陈慧, E-mail: 17339301889@163.com
    **同等贡献
  • 基金资助:
    河南省科技研发计划联合基金(优势学科培育类)项目(242301420131);郑州市“揭榜挂帅”制重点研发专项(2023JBGS013)

Different mutations in ZmMS13 generate the gms1 and yems1166 multiple allele maize male-sterile lines

ZHAO Zhi-Wen(), CHEN Hui(), LIAN Yu-Jie, LU Han, CAO Xu-Dong, WANG Fan, YU Meng-Fan, ZHANG Zhan-Hui, TANG Ji-Hua, CHEN Xiao-Yang()   

  1. College of Agronomy, Henan Agricultural University / State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Zhengzhou 450046, Henan, China
  • Received:2025-04-15 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-15
  • Contact: *E-mail: cxy759020@henau.edu.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Joint Foundation for Science and Technology Research and Development Program of Henan Province (Cultivation of Superior Disciplines)(242301420131);Zhengzhou Research and Development Project of Open Bidding for Selecting the Best Candidates(2023JBGS013)

摘要:

玉米雄性不育系的创制与应用是降低玉米杂交种制种成本、提高种子纯度的有效途径。本研究鉴定到2个玉米雄性核不育突变体gms1yems1166, 表型分析表明突变体花药角质层结构异常, 小孢子在单核后期开始降解, 成熟期突变体无花粉粒形成。遗传分析表明2个突变体不育性状受细胞核隐性单基因控制。通过图位克隆的策略将GMS1YEMS1166基因分别定位于第5染色体23.52~26.09 Mb和24.86~30.95 Mb区间, 该区间包含已报道的脂类转运蛋白基因ZmMS13, 编码ABCG转运蛋白ZmABCG2a。基因测序结果显示gms1ZmMS13基因第5外显子上有1个碱基的替换(TCA>TGA), 导致其翻译提前终止; 突变体yems1166ZmMS13基因的第1外显子上有8个碱基的缺失, 导致其翻译提前终止。等位性测验进一步证明gms1yems1166ZmMS13的新等位突变体。本研究鉴定到2个新的ZmMS13基因等位突变体, 为玉米雄性不育化杂交制种提供了新的种质资源。

关键词: 玉米, 雄性不育, 角质层, ms13, ABCG转运蛋白

Abstract:

The development and utilization of maize male-sterile lines is an effective strategy to reduce the cost of hybrid seed production and improve seed purity. In this study, two maize male-sterile mutants, gms1 and yems1166, were identified. Phenotypic analysis revealed that both mutants exhibited abnormal anther cuticle structures, microspore degradation at the late uninucleate stage, and complete absence of mature pollen grains. Genetic analysis indicated that male sterility in both mutants is controlled by a single recessive nuclear gene. Using a positional cloning approach, the GMS1 and YEMS1166 loci were mapped to intervals of 23.52-26.09 Mb and 24.86-30.95 Mb on chromosome 5, respectively, regions containing the previously reported male fertility gene ZmMS13, which encodes the ABCG transporter ZmABCG2a. Gene sequencing revealed that gms1 carries a single base substitution (TCA>TGA) in the fifth exon of ZmMS13, resulting in a premature stop codon. The yems1166 mutant harbors an 8-bp deletion in the first exon of the same gene, also leading to a premature stop codon. Allelic tests confirmed that gms1 and yems1166 are novel allelic variants of ZmMS13. These findings identify two new allelic mutants of ZmMS13 and provide valuable germplasm resources for the development of male-sterile lines in maize hybrid seed production.

Key words: maize, male sterility, anther cuticle, ms13, ABCG transporter

表1

基因定位的引物序列"

引物名称
Primer name
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
S08836 ACCAGTCCGCCACTACTATTCG CCGCTCCATCCGTCCTGTC
S08958 GGTGCCCGTTACATCAGATCAG GTGTGACCGTGTGAGTGGAATC
S08994 TGCTTGCCTTCTCCTGTTTGAC GCTCGGTTCACGCCTTCAC
S09011 TCCGTTCGGAATCACTTGTTGG TTCAGGAGGGAGCGGAGTTG
S09069 GCAACGTGCATGTGTGTG GTCAACGGCCAGCCCTAC
S09079 GCCAGCGTCACCGTCGTC TGTCGTGCGGAAGCCTGAAG
S09092 TCCTTATCCCTGCCAAGAAACG AGAGTGCGGAGAGTGAGACC
S09100 CCTTTCTGAATGGAGGGAGTAC CGTCTGGCTTCTTTTCATGTTG
S09128 TTAGGATCAGCAAGGCATAGGG GAGCGTTGTCAGGTAAGTTTGG
S09130 TGACTCATTCAGCAGCCTGGTG CCGTTGACTGGTCCACCTGTAC
S09138 TACCCGTCCCAATTCCCAACC AAGCAGCGAACCAGCACTTG
S09144 CCTTGGCTGTCTCCAGTAGTCC CCTGCTGGTCCTCTGGTTGTG
S09146 TGCCTGCCTATATCTTCGACAC TCAATTCCTCGGTAGCGTCATC
S09154 GCTTCTTGTCGGAAATCGTCAC TTTGGCAGGTTCAGCTAATTGC
S09160 GACACCATGCCTGTGACTGAG AAAGCCGTTTCTTGCCCTCTG
S09172 GCCGTGTTGGAATGATGGTC TCTTCAGCTAGAGAGGTGGTAC
S09220 CAACAACACAACGCCACAAC TGATGCCATGATGACCTGTATG

图1

开花期野生型和突变体gms1表型分析 A: 野生型和gms1植株, 标尺=30 cm; B: 野生型和gms1雄穗, 标尺=1 cm; C: 野生型和gms1小穗, 标尺=2 mm; D: 野生型花粉粒, 标尺=100 μm; E: gms1花粉粒, 标尺=100 μm。"

图2

不同发育时期野生型和突变体gms1花药形态比较 S8b: 四分体时期; S9: 单核小孢子前期; S10: 单核小孢子后期; S11: 双核时期; S13: 成熟期。标尺=1 mm。"

图3

不同发育时期小孢子发育观察 A, B: 四分体时期; C, D: 单核小孢子前期; E, F: 单核小孢子后期; H, I: 双核时期; J, K: 成熟期。WT: 野生型。标尺=100 μm。"

图4

成熟期花药角质层结构分析 A, B: 花药, 标尺=1 mm; C, D: 花药外表面, 标尺=25 μm; E, F: 花药内表面, WT: 野生型。标尺=5 μm。"

表2

F2分离群体雄性可育株与不育株分离比"

时间
Time
地点
Location
F2分离群体
F2 population
雄性可育株
Male fertile plants
雄性不育株
Male sterile plants
χ2
2022年春Spring in 2022 原阳Yuanyang gms1×B73 108 26 2.328
2022年夏Summer in 2022 原阳Yuanyang gms1×B73 46 15 0.011

图5

GMS1基因定位"

图6

YEMS1166基因定位"

表3

群体雄性可育株与不育株分离比"

时间
Time
地点
Location
群体
Population
雄性可育株
Male fertile plants
雄性不育株
Male sterile plants
χ2
2023 海南Hainan gms1×(yems1166×B73) 31 28 0.508
yems1166×(gms1×B73) 37 38 0.027
2023 原阳Yuanyang gms1×(yems1166×B73) 35 32 0.400
yems1166 ×(gms1×B73) 27 24 0.467

图7

ZmMS13基因测序"

[1] Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat Commun, 2023, 14: 2637.
[2] Xiao Y J, Jiang S Q, Cheng Q, Wang X Q, Yan J, Zhang R Y, Qiao F, Ma C, Luo J Y, Li W Q, et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biol, 2021, 22: 148.
doi: 10.1186/s13059-021-02370-7 pmid: 33971930
[3] 郭瑶晴, 孙晓靖, 连玉杰, 陈慧, 孙华越, 张雪海, 汤继华, 陈晓阳. 玉米雄性不育突变体x50的基因定位与遗传分析. 华北农学报, 2023, 38(1): 17-22.
doi: 10.7668/hbnxb.20193481
Guo Y Q, Sun X J, Lian Y J, Chen H, Sun H Y, Zhang X H, Tang J H, Chen X Y. Gene mapping and genetic analysis of male sterile mutant x50 in maize. Acta Agric Boreali-Sin, 2023, 38(1): 17-22 (in Chinese with English abstract).
[4] Wan X Y, Wu S W, Li X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era. Mol Plant, 2021, 14: 531-534.
doi: 10.1016/j.molp.2021.02.004 pmid: 33582376
[5] 付志远, 秦永田, 汤继华. 主要作物光温敏核雄性不育基因的研究进展与应用. 中国生物工程杂志, 2018, 38(1): 115-125.
Fu Z Y, Qin Y T, Tang J H. Reviews of photo-or/and thermo- sensitive genic male sterile gene in major crops. China Biotechnol, 2018, 38(1): 115-125 (in Chinese with English abstract).
[6] 闫米格, 武岩军, 任丽萍, 李素玲. 利用雄性不育系培育玉米新品种. 山西农业科学, 2011, 39: 519-521.
Yan M G, Wu Y J, Ren L P, Li S L. Study on corn hybrid selection with male sterile line. J Shanxi Agric Sci, 2011, 39: 519-521 (in Chinese with English abstract).
[7] Liu X Z, Jiang Y L, Wu S W, Wang J, Fang C W, Zhang S W, Xie R R, Zhao L N, An X L, Wan X Y. The ZmMYB84-ZmPKSB regulatory module controls male fertility through modulating anther cuticle-pollen exine trade-off in maize anthers. Plant Biotechnol J, 2022, 20: 2342-2356.
doi: 10.1111/pbi.13911 pmid: 36070225
[8] 王梦龙, 翁灵灵, 吴淑英, 许泽芬, 戴天佑, 彭小群. ABCG转运蛋白参与植物雄性育性调控的研究进展. 植物科学学报, 2024, 42: 387-394.
Wang M L, Weng L L, Wu S Y, Xu Z F, Dai T Y, Peng X Q. Research progress on the involvement of ABCG transporters in the regulation of plant male fertility. Plant Sci J, 2024, 42: 387-394 (in Chinese with English abstract).
[9] Jiang Y L, An X L, Li Z W, Yan T W, Zhu T T, Xie K, Liu S S, Hou Q C, Zhao L N, Wu S W, et al. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnol J, 2021, 19: 1769-1784.
doi: 10.1111/pbi.13590 pmid: 33772993
[10] Hou Q C, An X L, Ma B, Wu S W, Wei X, Yan T W, Zhou Y, Zhu T T, Xie K, Zhang D F, et al. ZmMS1/ZmLBD30-orchestrated transcriptional regulatory networks precisely control pollen exine development. Mol Plant, 2023, 16: 1321-1338.
[11] Zhang S M, Wu S W, Niu C F, Liu D C, Yan T W, Tian Y H, Liu S S, Xie K, Li Z W, Wang Y B, et al. ZmMs25 encoding a plastid-localized fatty acyl reductase is critical for anther and pollen development in maize. J Exp Bot, 2021, 72: 4298-4318.
[12] Somaratne Y, Tian Y H, Zhang H, Wang M M, Huo Y Q, Cao F G, Zhao L, Chen H B. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J, 2017, 90: 96-110.
[13] Djukanovic V, Smith J, Lowe K, Yang M Z, Gao H R, Jones S, Nicholson M G, West A, Lape J, Bidney D, et al. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J, 2013, 76: 888-899.
[14] Chen X Y, Zhang H, Sun H Y, Luo H B, Zhao L, Dong Z B, Yan S S, Zhao C, Liu R Y, Xu C Y, et al. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol, 2017, 173: 307-325.
doi: 10.1104/pp.16.00629 pmid: 28049856
[15] Zhu T T, Li Z W, An X L, Long Y, Xue X F, Xie K, Ma B, Zhang D F, Guan Y J, Niu C F, et al. Normal structure and function of Endothecium chloroplasts maintained by ZmMs33-mediated lipid biosynthesis in tapetal cells are critical for anther development in maize. Mol Plant, 2020, 13: 1624-1643.
doi: 10.1016/j.molp.2020.09.013 pmid: 32956899
[16] An X L, Dong Z Y, Tian Y H, Xie K, Wu S W, Zhu T T, Zhang D F, Zhou Y, Niu C F, Ma B, et al. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant, 2019, 12: 343-359.
[17] Huo Y Q, Pei Y R, Tian Y H, Zhang Z G, Li K, Liu J, Xiao S L, Chen H B, Liu J. IRREGULAR POLLEN EXINE2 encodes a GDSL lipase essential for male fertility in maize. Plant Physiol, 2020, 184: 1438-1454.
[18] Xu Q L, Yang L, Kang D, Ren Z J, Liu Y J. Maize MS2 encodes an ATP-binding cassette transporter that is essential for anther development. Crop J, 2021, 9: 1301-1308.
[19] Fang C W, Wu S W, Niu C F, Hou Q C, An X L, Wei X, Zhao L N, Jiang Y L, Liu X Z, Wan X Y. Triphasic regulation of ZmMs13 encoding an ABCG transporter is sequentially required for callose dissolution, pollen exine and anther cuticle formation in maize. J Adv Res, 2023, 49: 15-30.
[20] Niu Q K, Shi Z W, Zhang P, Su S, Jiang B, Liu X W, Zhao Z F, Zhang S Z, Huang Q, Li C, et al. ZmMS39 encodes a callose synthase essential for male fertility in maize (Zea mays L.). Crop J, 2023, 11: 394-404.
[21] Hu M J, Li Y F, Zhang X B, Song W B, Jin W W, Huang W, Zhao H M. Maize sterility gene DRP1 encodes a desiccation-related protein that is critical for Ubisch bodies and pollen exine development. J Exp Bot, 2022, 73: 6800-6815.
[22] An X L, Zhang S W, Jiang Y L, Liu X Z, Fang C W, Wang J, Zhao L N, Hou Q C, Zhang J, Wan X Y. CRISPR/Cas9-based genome editing of 14 lipid metabolic genes reveals a sporopollenin metabolon ZmPKSB-ZmTKPR1-1/-2 required for pollen exine formation in maize. Plant Biotechnol J, 2024, 22: 216-232.
[23] Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, et al. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16: 459-471.
[24] Chen X Y, Li Y F, Sun H Y, An X L, Tang J H. Molecular mechanisms of male sterility in maize. Plant Mol Biol Rep, 2024, 42: 483-491.
[25] 田有辉, 万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法. 中国生物工程杂志, 2018, 38(1): 88-99.
Tian Y H, Wan X Y. Cytobiology and molecular genetics research methods on maize anther development. China Biotechnol, 2018, 38(1): 88-99 (in Chinese with English abstract).
[26] Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B L, Scolaro E, Collinson S, Glassman K, et al. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15: 942-952.
[27] Jiang Y L, Li Z W, Liu X Z, Zhu T T, Xie K, Hou Q C, Yan T W, Niu C F, Zhang S W, Yang M B, et al. ZmFAR1 and ZmABCG26 regulated by microRNA are essential for lipid metabolism in maize anther. Int J Mol Sci, 2021, 22: 7916.
[28] 吴锁伟, 方才臣, 邓联武, 万向元. 玉米隐性核雄性不育基因研究进展及其育种应用途径分析. 分子植物育种, 2012, 10: 1001-1011.
Wu S W, Fang C C, Deng L W, Wan X Y. Research progress on maize recessive genic male sterility gene and its utilization strategies in maize breeding program. Mol Plant Breed, 2012, 10: 1001-1011 (in Chinese with English abstract).
[29] Zhao G C, Shi J X, Liang W Q, Zhang D B. ATP binding cassette G transporters and plant male reproduction. Plant Signal Behav, 2016, 11: e1136764.
[30] 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望. 中国水稻科学, 2024, 38: 463-474.
doi: 10.16819/j.1001-7216.2024.231008
Wang Y C, Zhu B S, Zhou L, Zhu J, Yang Z N. Sterility mechanism of photoperiod/thermo-sensitive genic male sterile lines and development and prospects of two-line hybrid rice. Chin J Rice Sci, 2024, 38: 463-474 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2024.231008
[31] 马萌. 玉米细胞核雄性不育基因定位及克隆的研究进展. 农业科学, 2020, 10: 332-341.
Ma M. Advances in research on the location and cloning of maize nuclear male sterility gene. Hans J Agric Sci, 2020, 10: 332-341 (in Chinese with English abstract).
[32] Kirschner G K. Another piece in the puzzle of pollen development. Plant J, 2022, 111: 1507-1508.
[33] Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321-342.
doi: S1674-2052(19)30020-6 pmid: 30690174
[34] Zhu T T, Wu S W, Zhang D F, Li Z W, Xie K, An X L, Ma B, Hou Q C, Dong Z Y, Tian Y H, et al. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene. Theor Appl Genet, 2019, 132: 2137-2154.
[35] An X L, Ma B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, et al. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117: 23499-23509.
[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329.
[3] 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306.
[4] 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340.
[5] 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466.
[6] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[7] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[8] 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990.
[9] 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837.
[10] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[11] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[12] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[13] 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513.
[14] 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581.
[15] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!