欢迎访问作物学报,今天是

作物学报

• •    

甘蓝型油菜苗期耐碱性种质综合鉴定与评价

胡志康1,舒雨1,王会1,杨莹莹1,廖俊宇2,刘佳1,成洪涛1,郭晨3,张园园1,刘胜毅1,胡琼1,梅德圣1,*,李超1,*   

  1. 1 中国农业科学院油料作物研究所, 湖北武汉 430062; 2长江大学生命科学院, 湖北荆州 434000; 3内蒙古自治区农牧业科学院植物保护研究所, 内蒙古呼和浩特 010031
  • 收稿日期:2025-03-20 修回日期:2025-07-09 接受日期:2025-07-09 网络出版日期:2025-07-22
  • 通讯作者: 李超, E-mail:lichao01@caas.cn; 梅德圣, E-mail: meidesheng@caas.com
  • 基金资助:
    本研究由国家科技创新2030项目(2022ZD04010), 国家自然科学基金项目(32372065), 中国农业科学院科技创新工程项目(CAAS-ASTIP-2021- OCRI)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12)资助。

Comprehensive evaluation of alkaline tolerance in Brassica napus at the seedling stage

HU Zhi-Kang1,SHU Yu1,WANG Hui1,YANG Ying-Ying1,LIAO Jun-Yu2,LIU Jia1,CHENG Hong-Tao1,GUO Chen3,ZHANG Yuan-Yuan1,LIU Sheng-Yi1,HU Qiong1,MEI De-Sheng1,*,LI Chao1,*   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China; 2 The School of Life science, Yangtze University, Jingzhou 434000, Hubei, China; 3 Institute of Plant Protection, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
  • Received:2025-03-20 Revised:2025-07-09 Accepted:2025-07-09 Published online:2025-07-22
  • Contact: 李超, E-mail:lichao01@caas.cn; 梅德圣, E-mail: meidesheng@caas.com
  • Supported by:
    This study was supported by the National Science and Technology Innovation 2030 of China (2022ZD04010), the National Natural Science Foundation of China (32372065), the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2021- OCRI), and the China Agriculture Research System of MOF and MARA (CARS-12).

摘要:

土壤盐碱化是限制油菜扩面增产的重要因素之一。发掘耐碱性油菜新种质对培育耐碱油菜新品种、实施油料产能提升工程以及盐碱地综合开发利用具有重要意义。精准高效的耐碱鉴定方法,是挖掘耐碱种质资源、开展油菜耐盐碱遗传改良的基础。本研究采用75 mmol L?1 NaHCO3Na2CO3 (物质的量比为2∶1)的混合碱溶液,通过调整营养土与蛭石的配比,配制了4个不同pH梯度(pH 8.75pH 8.95pH 9.18pH 9.42)的碱性土壤,以油菜主推品种中双11号为测试材料,测定了适宜油菜耐碱性鉴定的土壤pH值为8.95。利用该鉴定方法,对224份油菜自然种质资源进行碱胁迫处理,分别收集了正常和碱处理条件下种植的油菜幼苗地上部鲜重、地上部干重、叶片数量和存活率4项表型指标,采用变异系数分析、相关性分析、主成分分析、隶属函数分析和聚类分析对油菜苗期耐碱性进行综合鉴定和评价。结果表明,pH8.95处理后,表型指标的变异系数较正常种植条件明显增大,地上部干鲜重的变异系数增大超25%;地上部干鲜重、叶片数量和存活率的耐碱指数与耐碱综合评价值D之间存在极显著正相关;主成分PC1PC2及综合评价值D均服从正态分布;结合隶属函数分析和聚类分析,将224份油菜种质资源的耐盐碱性划分为碱极敏感型、碱敏感型、中间型、碱耐受型和碱高耐受型5个等级,分别占供试材料总数的7.14%50.00%33.93%8.58%0.45%,筛选出碱耐受型种质19份,碱高耐受型种质1份。通过对224份材料的4个表型数据的耐碱数进行回归分析,建立了油菜苗期耐碱性的回归方程Y=0.009+0.986X1+0.208X2+0.151X3,地上部干鲜重和叶片数量可以作为油菜苗期耐碱性鉴定的重要指标。

关键词: 甘蓝型油菜, 苗期, 土培耐碱性, 评价鉴定, 种质筛选

Abstract:

Soil salinization is a major factor limiting rapeseed production. Identifying alkali-tolerant rapeseed germplasm is of great importance for breeding programs, enhancing oil production capacity, and promoting the sustainable use of saline-alkali land. Accurate and efficient screening and identification methods are fundamental to the discovery of alkali-tolerant germplasm resources and the genetic improvement of alkali tolerance in rapeseed. In this study, a mixed alkali solution (75 mmol L?1, NaHCO3∶Na2CO3 at a molar ratio of 2:1) was used to simulate alkaline stress. Four soil pH gradients (pH 8.75, 8.95, 9.18, and 9.42) were established by adjusting the ratio of nutrient soil to vermiculite. The widely cultivated variety ‘Zhongshuang 11’ was used as the test material to evaluate the effects of different pH levels on rapeseed growth and development. A soil pH of 8.95 was identified as optimal for evaluating alkali tolerance. A total of 224 natural rapeseed germplasms were subjected to alkali stress, and four phenotypic traits were measured under both control and alkaline conditions: aboveground fresh weight, aboveground dry weight, leaf number, and survival rate. Alkali tolerance at the seedling stage was comprehensively assessed using coefficient of variation analysis, correlation analysis, principal component analysis, membership function analysis, and cluster analysis. Results showed that under pH 8.95 treatment, the coefficient of variation (CV) for all phenotypic traits increased significantly compared to control conditions, with the CV of both aboveground fresh and dry weights increasing by more than 25%. A highly significant positive correlation was observed between the alkali tolerance indices (aboveground fresh/dry weight, leaf number, survival rate) and the comprehensive alkali tolerance score (D value). The first two principal components (PC1 and PC2), along with the comprehensive score D, followed a normal distribution. Based on membership function and cluster analyses, the 224 germplasms were classified into five alkali tolerance groups: highly alkali-sensitive (7.14%), alkali-sensitive (50.00%), intermediate (33.93%), alkali-tolerant (8.58%), and highly alkali-tolerant (0.45%). In total, 19 alkali-tolerant and 1 highly alkali-tolerant germplasms were identified. A regression equation was established based on the tolerance indices of the four phenotypic traits across all samples: Y = 0.009 + 0.986X? + 0.208X? + 0.151X?. Aboveground fresh weight, dry weight, and leaf number were identified as key indicators for evaluating alkali tolerance in rapeseed seedlings.

Key words: Brassica napus (rapeseed), seedling stage, alkali tolerance of soil culture, evaluation and identification, germplasm screening

[1] 刘奕媺, 于洋, 方军. 盐碱胁迫及植物耐盐碱分子机制研究. 土壤与作物, 2018, 7: 201–211.

Liu Y M, Yu Y, Fang J. Saline-alkali stress and molecular mechanism of saline-alkali tolerance in plants. Soils Crops, 2018, 7: 201–211 (in Chinese with English abstract).

[2] Zhang H L, Yu F F, Xie P, Sun S Y, Qiao X H, Tang S Y, Chen C X, Yang S, Mei C, Yang D K, et al. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379: eade8416.

[3] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681.

[4] Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141–1146.

[5] Cao Y B, Liang X Y, Yin P, Zhang M, Jiang C F. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance. New Phytol, 2019, 222: 301–317.

[6] Cao Y B, Zhang M, Liang X Y, Li F R, Shi Y L, Yang X H, Jiang C F. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat Commun, 2020, 11: 186.

[7] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46: 1591–1604.

Chen E Y, Wang R F, Qin L, Yang Y B, Li F F, Zhang H W, Wang H L, Liu B, Kong Q H, Guan Y A. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination. Acta Agron Sin, 2020, 46: 1591–1604 (in Chinese with English abstract).

[8] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551–1561.

Zhang J, Gao W B, Yan L, Zhang Z W, Zhou H T, Wu B. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.). Acta Agron Sin, 2023, 49: 1551–1561 (in Chinese with English abstract).

[9] 薛天源, 鲁金春子, 何思晓, 余忆, 陈敬东, 文静, 沈金雄, 傅廷栋, 曾长立, 万何平. 286份甘蓝型油菜种质苗期耐盐碱性综合评价. 植物遗传资源学报, 2024, 25: 356–372.

Xue T Y, Lu J C Z, He S X, Yu Y, Chen J D, Wen J, Shen J X, Fu T D, Zeng C L, Wan H P. Comprehensive evaluation on saline-alkali tolerance of 286 Brassica napus germplasm at seedling stage. J Plant Genet Resour, 2024, 25: 356–372 (in Chinese with English abstract).

[10] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2011, 13(1): 1–8.

Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2011, 13(1): 1–8 (in Chinese with English abstract).

[11] 冯海棠, 王汉中. 新形势下的我国食用植物油供给安全对策. 中国油料作物学报, 2024, 46: 221–227.

Feng H T, Wang H Z. Security strategy for the nation’s edible vegetable oil supplies under the new circumstances. Chin J Oil Crop Sci, 2024, 46: 221–227 (in Chinese with English abstract).

[12] 杨明煊, 李明玉, 汪波, 王泽, 刘智强, 周广生, 于放, 刘志文. 甘蓝型油菜转录因子BnHY5-2参与盐碱胁迫的响应. 华北农学报, 2024, 39(4): 47–53.

Yang M X, Li M Y, Wang B, Wang Z, Liu Z Q, Zhou G S, Yu F, Liu Z W. Response of the transcription factor BnHY5-2 in Brassica napus L.to salt and alkali stress. Acta Agric Boreali-Sin, 2024, 39(4): 47–53 (in Chinese with English abstract).

[13] 汪波, 文静, 张凤华, 李立军, 来永才, 任长忠, 鲁剑巍, 沈金雄, 郭亮, 周广生, 等. 耐盐碱油菜品种选育及修复利用盐碱地研究进展. 科技导报, 2021, 39(23): 59–64.

Wang B, Wen J, Zhang F H, Li L J, Lai Y C, Ren C Z, Lu J W, Shen J X, Guo L, Zhou G S, et al. Research progress in breeding of saline-alkaline tolerant rapeseed and restoring the salinate land. Sci Technol Rev, 2021, 39(23): 59–64 (in Chinese with English abstract).

[14] 万何平, 张浩, 余忆, 陈敬东, 曾长立, 赵伦, 文静, 沈金雄, 傅廷栋. 油菜耐盐碱研究与应用. 中国农业科技导报, 2022, 24(12): 59–67.

Wan H P, Zhang H, Yu Y, Chen J D, Zeng C L, Zhao L, Wen J, Shen J X, Fu T D. Study and application of salt and alkali tolerance in rapeseed. J Agric Sci Technol China, 2022, 24(12): 59–67 (in Chinese with English abstract).

[15] Zhang Y Y, Yang Z Q, He Y Z, Liu D X, Liu Y Y, Liang C Y, Xie M L, Jia Y P, Ke Q L, Zhou Y M, et al. Structural variation reshapes population gene expression and trait variation in 2105 Brassica napus accessions. Nat Genet, 2024, 56: 2538–2550.

[16] 梁潇, 侯向阳, 王艳荣, 任卫波, 赵青山, 王照兰, 李怡, 武自念. 羊草种质资源耐盐碱性综合评价. 中国草地学报, 2019, 41(3): 1–9.

Liang X, Hou X Y, Wang Y R, Ren W B, Zhao Q S, Wang Z L, Li Y, Wu Z N. Comprehensive evaluation on saline-alkali tolerance of Leymus chinensis germplasm resources. Chin J Grassland, 2019, 41(3): 1–9 (in Chinese with English abstract).

[17] 李建波, 刘志萍, 王文迪, 巴图, 马宇, 吕二锁, 杜慧婷, 徐寿军. 大麦萌发期优异耐碱性种质筛选与鉴定. 草业科学, 2023, 40: 2581–2597.

Li J B, Liu Z P, Wang W D, Ba T, Ma Y, Lyu E S, Du H T, Xu S J. Screening and identification of excellent alkali-tolerant germplasm of barley at the germination stage. Pratac Sci, 2023, 40: 2581–2597 (in Chinese with English abstract).

[18] Oster J D, Shainberg I, Abrol I P. Reclamation of salt-affected soils. In: Skaggs R W, van Schilfgaarde J, eds. Agricultural Drainage. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. pp 659–691.

[19] Zhang L, Qian Q, Song S Y. Combating alkaline stress with Alkaline tolerance 1, which encodes a conserved Gγ protein in multiple crops. Plant Commun, 2023, 4: 100603.

[20] 李积铭, 李爱国, 李和平, 管明威, 武军艳, 孙万仓, 翟兰菊, 马骊, 郭安强. 环渤海区域耐盐碱冬油菜品种全生育期鉴定筛选. 中国油料作物学报, 2025, 47: 402–412.

Li J M, Li A G, Li H P, Guan M W, Wu J Y, Sun W C, Zhai L J, Ma L, Guo A Q. Identification and screening of saline-alkali tolerant winter Brassica napus L. cultivars during whole growth stage in the Bohai Rim Region. Chin J Oil Crop Sci, 2025, 47: 402–412 (in Chinese with English abstract).

[21] 郭凯, 封晓辉, 伍靖伟, 陈小兵, 巨兆强, 孙宏勇, 刘小京.  盐碱地肥沃耕层构建水肥盐综合调控机理与技术研究进展. 土壤学报, 2024, 61: 29–38.
Guo K, Feng X H, Wu J W, Chen X B, Ju Z Q, Sun H Y, Liu X J. Research progress on mechanism and technology of integrated regulating on soil water, salt and fertility under fertile plough layers construction in saline-alkali soils. Acta Pedol Sin, 2024, 61: 29–38 (in Chinese with English abstract).

[22] 王思宇. 大豆种子萌发期耐碱种质资源筛选与转录组研究. 吉林农业大学硕士学位论文, 吉林长春, 2024.
Wang S Y. Selection of Alkali-tolerant Germplasm Resources and Transcriptome Studies during Germination of Soybean. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2024 (in Chinese with English abstract).

[23] 相广庆. VvERF1B促进草酸分泌提高葡萄根系碱性盐耐性的分子机制. 山东农业大学博士学位论文, 山东泰安, 2024.

Xiang G Q. Molecular Mechanisms Underlying VvERF1B Promoting Oxalate Acid Secretion and Improving Alkaline Salt Tolerance in Grapevine Roots. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2024 (in Chinese with English abstract).

[24] Sheng W, Zhang G G, Zhai L Y, Xu J L. Candidate genes for alkali tolerance identified by genome-wide association study at the seedling stage in rice (Oryza sativa L.). Sci Rep, 2024, 14: 30063.

[25] Chen J D, Zhang H, Tong J Q, Liu C Y, Ran J H, Tang J, Liu J Y, Wen J, Zeng C L, Wan H P, et al. Genome-wide association analysis of root length traits in Brassica napus at germination stage under sodium carbonate stress. Euphytica, 2021, 217: 197.

[26] 陶顺仙, 张燕, 李萍, 燕佳琦, 徐爱遐, 黄镇. NaHCO3胁迫对甘蓝型油菜幼苗生长的影响及其耐盐候选基因预测. 西北农业学报, 2019, 28: 1978–1986.
Tao S X, Zhang Y, Li P, Yan J Q, Xu A X, Huang Z. Effects of NaHCO3 stress on growth of Brassica napus seedlings and prediction of candidate genes related to salt tolerance. Acta Agric Boreali-Occidentalis Sin, 2019, 28: 1978–1986 (in Chinese with English abstract).

[27] Guo S Q, Chen Y X, Ju Y L, Pan C Y, Shan J X, Ye W W, Dong N Q, Kan Y, Yang Y B, Zhao H Y, et al. Fine-tuning gibberellin improves rice alkali-thermal tolerance and yield. Nature, 2025, 639: 162–171.

[1] 文璇, 钟秀丽, 王尚文, 金涛, 彭君, 刘恩科. 基于耐性指数的青稞苗期耐低氮种质筛选及不同氮效率类型综合评价[J]. 作物学报, 2025, 51(7): 1949-1958.
[2] 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究[J]. 作物学报, 2025, 51(5): 1189-1197.
[3] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[4] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
[5] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[6] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[7] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[8] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[9] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[10] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
[11] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[12] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[13] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[14] 李云香, 张思甜, 侯万伟, 张小娟. ICARDA引进小麦种质苗期的抗旱性鉴定及SNP关联分析[J]. 作物学报, 2024, 50(11): 2742-2753.
[15] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!