欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (06): 991-998.

• 研究论文 • 上一篇    下一篇

西南及四川区试玉米组合遗传多样性分析

陈发波;杨克诚*;荣廷昭;潘光堂   

  1. 四川农业大学玉米研究所/教育部作物基因资源与遗传改良重点实验室,四川雅安 625014
  • 收稿日期:2006-07-19 修回日期:1900-01-01 出版日期:2007-06-12 网络出版日期:2007-06-12
  • 通讯作者: 杨克诚

Analysis of Genetic Diversity of Maize Hybrids in the Regional Tests of Sichuan and Southwest China

CHEN Fa-Bo,YANG Ke-Cheng*,RONG Ting-Zhao,PAN Guang-Tang   

  1. Maize Research Institute, Sichuan Agricultual University/ Key Laboratory of Crop Genetic Resources and Improvement, Ya’an 625014, Sichuan, China
  • Received:2006-07-19 Revised:1900-01-01 Published:2007-06-12 Published online:2007-06-12
  • Contact: YANG Ke-Cheng

摘要:

采用表型性状分析、SSR标记和系谱分析对186个区试及引种试验玉米组合进行遗传多样性分析。结果表明,各组合间20个表型性状都变异在一个较小的范围内;利用筛选出的60对扩增条带清晰、具明显多态性的SSR引物,共检测到608个等位基因,每对引物检测到3~23个等位基因,平均为10.1个;SSR多态信息量(PIC)分布范围为0.5179~0.9256,平均值为0.7826;186个组合的遗传相似系数变幅在0.6067~0.9162之间,平均值为0.7722,相似系数在0.7000以上的组合有16 499对,占96.9%,供试材料分为10类,且88.2%的组合集中在第4、8、10类;51个系谱清楚的组合中有36个(占70.58%)与美国的PN种质有密切关系。以上结果均表明,供试组合相似程度较高,遗传差异较小,遗传基础相对单一,进一步拓展玉米种质遗传基础仍然显得十分必要。

关键词: 玉米, 杂交种, 遗传多样性, SSR标记, 聚类分析, 系谱

Abstract:

Many maize breeders have been paying attention and efforts to solve the problem of narrow genetic diversity in maize. In order to broaden the genetic basis in maize breeding, it is necessary to know the genetic diversity in the current maize hybrids. There may be two ways to study the genetic diversity in maize hybrids. One is to analyze the hybrids which have been widely applied in production and those in regional tests. Another is to analyze the parents of maize hybrids. Most former studies were directed to evaluate the genetic diversity of the parents and few directed to study the hybrids. In present study, analyses of phenotypic characters, SSR molecular markers and pedigrees were made to study the genetic diversity in 186 maize hybrids that were tested in the regional trials of Sichuan and Southwest China.
The results showed that the variation coefficients of plant height, ear height, days to silking, pollen shedding, ASI, ear length, fertile kernel, kernel depth, cob diameter, ear diameter, rows per ear, kernels per row, ear weight, cob weight, yield per plant, fresh weight per ear, water content, kernel rate, 100-kernel weight and test weight among 186 hybrids were 5.74%, 12.06%, 2.63%, 2.36%, 8.50%, 9.68%, 5.80%, 10.57%, 9.32%, 6.02%, 7.90%, 10.54%, 15.95%, 21.51%, 16.19%, 13.85%, 10.35%, 2.46%, 10.92%, and 4.93%, respectively. There were differences in the variation coefficients of different character, but all of the variation coefficients changed in a small range. Sixty pairs of SSR primer distributed on the ten chromosomes of maize produced stable amplified bands and 608 alleles were detected among the hybrids. The average number of alleles per locus was 10.1 with a range from 3 to 23. The values of polymorphism information content (PIC) for each SSR locus varied from 0.5179 to 0.9256 with an average of 0.7826. The genetic similarities of SSR marker pattern among the 186 hybrids ranged from 0.6067 to 0.9162, with an average of 0.7722. There were 16499 pairs of genetic similarity, in which 96.9% were 0.7000 to 0.9256. The cluster analysis showed that the hybrids could be classified into ten clusters, with 88.2% of the hybrids included in Cluster 4, Cluster 8 and Cluster 10. The analysis of pedigree sources of 51 hybrids showed that 36 hybrids had close genetic relationships with the hybrids of Pioneer Company developed in late 1980s and early 1990s in the United States, such as “Y78599”, “Y7865”, “Y78698”, accounting for 70.58%. Meanwhile 13 hybrids had close genetic relationship with “Y78599", accounting for 8.66%. The genetic similarities of SSR marker pattern among the 51 hybrids ranged from 0.661 92 to 0.8799, with an average of 0.7686. There were 1 196 pairs of genetic similarities ranged between 0.7000 and 0.8796, accounting for 93.80% of all the genetic similarity pairs. The cluster analysis showed that 88.2% of the 51 hybrids were in Cluster 4, Cluster 8, and Cluster 10. It was indicated that the similarity was high and the genetic diversity was narrow among the 186 hybrids. It is necessary to broaden the genetic basis of breeding germplasm in maize.

Key words: Zea mays L., Hybrid, Genetic diversity, SSR marker, Cluster analysis, Pedigree

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!