欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (07): 972-979.

• 研究论文 • 上一篇    下一篇

水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响

王维1,2; 蔡一霞2;蔡昆争2;张建华3,*;杨建昌1;朱庆森1,*   

  1. 1扬州大学/江苏省作物遗传生理重点实验室,江苏扬州225009;2华南农业大学农学院,广东广州510642;3香港浸会大学生物系,香港九龙塘
  • 收稿日期:2005-07-20 修回日期:1900-01-01 出版日期:2006-07-12 网络出版日期:2006-07-12
  • 通讯作者: 朱庆森,张建华

Effect of Controlled Soil Drying on Grain Filling and Activities of Key Enzymes for Starch Synthesis in Rice (Oryza sativa L.)

WANG Wei1 2,CAI Yi-Xia2,CAI Kun-Zheng2,ZHANG Jian-Hua3 *,YANG Jian-Chang1,ZHU Qing-Sen1 *   

  1. 1 Key Laboratory of Crop Genetics & Physiology, Yangzhou University, Yangzhou 225009, Jiangsu; 2 College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong; 3 Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
  • Received:2005-07-20 Revised:1900-01-01 Published:2006-07-12 Published online:2006-07-12
  • Contact: ZHANG Jian-Hua,ZHU Qing-Sen

摘要:

以两个灌浆速率差异较大的杂交稻组合(汕优63,Pc311/早献党)为材料,设置出穗后高氮(HN)和正常氮(NN)两个水平,以正常灌水为对照(WW),研究适度水分胁迫(WS)对水稻籽粒灌浆速率与籽粒中淀粉合成关键酶活性的影响。结果表明, HN导致水稻贪青迟熟,主要表现为淀粉积累速率和积累量显著下降,造成粒重和产量降低。适度水分胁迫处理能有效改善贪青稻株的籽粒充实状况。施高氮导致水稻籽粒中蔗糖合成酶(SuSy)、腺苷二磷酸葡萄糖焦磷酸化酶(ADP-Gppase)、颗粒结合淀粉合成酶(GBSS)、可溶性淀粉合成酶(SSS)和淀粉分支酶(SBE)活性降低,是贪青稻株籽粒淀粉积累速率下降和充实不良的内在生理原因。适度水分胁迫处理能诱导籽粒中SuSy、ADP-Gppase、SSS和SBE活性上升,进而增加籽粒淀粉积累和粒重。而正常施氮下,水分胁迫导致稻株籽粒灌浆后期同化物供应不足和淀粉合成代谢酶活性下降过快,是其籽粒淀粉积累总量减少、粒重降低的主要原因。

关键词: 水分胁迫, 灌浆速率, 蔗糖合成酶, 淀粉合成关键酶, 水稻

Abstract:

Heavy application of nitrogen fertilizer, especially in highly productive areas, is well known to lead a delayed senescence. Unfavorably-delayed senescence retards the active and ordered process that partitions the photosynthetic assimilates into grains, and results in a decrease in grain-filling rate and grain weight. A moderate soil drying applied at grain filling period can enhance the plant senescence and may improve grain filling. In present study, the concrete container experiments were conducted at Yangzhou University. Two rice combinations were grown at the rate of 5 g N·m-2 (NN) and 20 g·m-2(HN) at initial heading in order to have variable development of senescence. A moderate soil drying was imposed from 9 d after anthesis in consideration that the division of endosperm cell is sensitive to water deficit. The study was designed to test the hypothesis: if a soil drying is controlled properly at mid-late stage of grain filling, an early senescence induced by drought stress would accelerate the rate of grain filling and increase grain weight and yield where the senescence is unfavorably delayed. If so, it would be further evaluated whether the enzymes regulating grain starch synthesis were changed by water stress.
In present study, we found that, plant senescence was unfavorably delayed by heavy application of nitrogen, which resulted in a slow grain filling and low grain yield (Table 1). Water deficit treatment significantly reduced mid-day leaf water potential and enhanced plant senescence at mid-later stage of grain filling (Fig.1, Fig.2). Such drought stress significantly increased grain-filling rate by 8.5%–13.6% at NN and 25.3%–28.0% at HN, and shortened grain-filling period by 2.8–3.9 d at NN and 4.2–4.9 d at HN, respectively, when compared to well-watered treatments(Table 1). The grain weight and grain yield in water stress treatments were significantly decreased at NN, but significantly increased at HN. A slow rate of starch accumulation caused by HN application was attributed to enzyme activity decreases in the metabolism of sucrose to starch (Fig.3, Fig.5 and Fig.6). The treatment of water stress increased sink activity by increasing enzyme activities, including sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (ADP-Gppase), soluble starch synthase(SSS) and starch branching enzyme (SBE), and resulted in enhanced starch accumulation in grains (Fig.5, Fig.6). In NN treatments, the shortage of assimilation supply and the enzyme activity decreases in the metabolism of sucrose to starch were responsible for the decreases in grain weight and yield under water stress conditions(Fig.4, Fig.5 and Fig.6). It is concluded that a soil drying is properly applied in conditions where plant senescence was unfavorably delayed caused by heavy application of nitrogen fertilizer, can improve grain filling through increasing starch accumulation rate, as the result of inducing and enhancing activities of SuSy, ADP-Gppase, SSS and SBE.

Key words: Water stress, Grain-filling rate, Sucrose synthase, Key enzymes for starch synthesis, Rice

中图分类号: 

  • S511
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!