欢迎访问作物学报,今天是

作物学报 ›› 2005, Vol. 31 ›› Issue (10): 1322-1327.

• 研究论文 • 上一篇    下一篇

不同耐低磷水稻基因型秧苗对难溶性磷的吸收利用

郭再华;贺立源;徐才国   

  1. 华中农业大学资源环境学院
  • 收稿日期:2004-09-09 修回日期:1900-01-01 出版日期:2005-10-12 网络出版日期:2005-10-12
  • 通讯作者: 贺立源

Uptake and Use of Sparingly Soluble Phosphorus by Rice Genotypes with Different P-efficiency

GUO Zai-Hua;HE Li-Yuan;XU Cai-Guo   

  1. 1Resource and Environment College of Huazhong Agricultural University, Wuhan 430070, Hubei
  • Received:2004-09-09 Revised:1900-01-01 Published:2005-10-12 Published online:2005-10-12
  • Contact: HE Li-Yuan

摘要:

选取4个典型耐低磷水稻基因型99011、508、580和99112,并以2个磷敏感基因型99012和99056为参照,采用营养液培养和砂培的方法,研究不同磷处理对秧苗生长的影响以及不同耐低磷基因型对3种难溶性磷源(有机磷、铝磷和磷矿粉)吸收利用能力的差异。结果表明,不同无机磷处理,6个基因型生物量和根干重基本上均为全磷处理(P)>对照+铝磷(CK+Al-P)>对照+磷矿粉(CK+RP)> 对照(CK);4个耐低磷基因型根干重和根冠比均大于2个磷敏感基因型;对于根冠比,耐低磷基因型580和99011为对照+磷矿粉(CK+RP)>对照+铝磷(CK+Al-P)> 对照(CK)> 全磷处理(P),耐低磷基因型508、99112和磷敏感基因型99012为CK> CK+RP> CK+Al-P > P,磷敏感基因型99056为CK+Al-P > CK+RP > P>CK;缺磷处理,秧苗活化吸收难溶性磷源的能力均为OP> Al-P> RP,且不同基因型的分解吸收能力对OP为99011> 508> 580> 99012> 99112> 99056(表2),对Al-P为580> 99011> 99112> 508> 99056> 99012(表3),对RP为580> 99112> 99011> 508> 99012> 99056(表2)。此外,缺磷即CK处理,508对低浓度的磷吸收最多(表2和表3),而580对磷的利用效率显著高于其他基因型(表3),这些特征可能也是它们耐低磷的重要贡献因子之一。

关键词: 水稻, 磷效率, 磷源, 吸收利用, 耐低磷机制

Abstract:

Four low-P tolerant rice genotypes named 99011, 580, 508 and 99112 were used with two low-P sensitive rice genotypes named 99012 and 99056 as reference, to investigate the genetic differences for growth as influenced by different inorganic phosphorus supply, and availability and uptake ability to three insoluble P named organic P, Al-P and RP, using solution culture and sand quartz culture respectively. The results demonstrated that biomass and root dry weight of rices were reduced by low P, but R/S was affected by both supplied P level and uptake ability of plant to low P. Under the condition of low P, the biomass and root dry weight with different inorganic phosphorus treatments were P> CK+Al-P > CK+RP > CK; root dry weight and root shoot ratio of four low-P tolerant rice genotypes were larger than those of two low-P sensitive rice genotypes; For R/S, 580 and 99011 were CK+RP > CK+Al-P > CK> P, 508, 99112 and 99012 were CK> CK+RP > CK+Al-P > P, but 99056 was CK+Al-P > CK+RP > P> CK. The availability of sparingly soluble phosphates and organic phosphorus absorbed by rice seedlings was OP> Al-P> RP, but different rice cultivars had significant difference in response to three insoluble P compounds. P uptake amount for organic phosphorus was 99011> 508> 580> 99012> 99112> 99056, for Al-P was 580> 99011> 99112> 508> 99056> 99012, and for RP was 580> 99112> 99011> 508> 99012> 99056. Furthermore 508 has highest uptake efficiency to low phosphorus; 580 has highest P utilization efficiency , and absorbed more sparingly soluble phosphorus especially Al-P and RP than others; They are maybe one of the important reasons in 508 and 580 for low-P tolerance in 508 and 580. Low-P tolerant rice genotype 99112, a special material, it has small biomass and achieve high relative grain yield. As for low-P sensitive rice genotype 99056, its utilization efficiency to phosphorus is not low, but it just has small root system, only active and uptake a little sparingly soluble phosphorus, and can not absorb low concentration phosphorus.

Key words: Rice, P efficiency, P sources, Uptake and use, Mechanism of tolerance to low-P stress

中图分类号: 

  • S511
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!