欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (07): 1227-1232.

• 耕作栽培·生理生化 • 上一篇    下一篇

IR64背景耐旱导入系“PD29”分蘖期的抗逆生理特征

赵秀琴1;谢学文1;孙勇1;邓建利1;朱苓华1,*;黎志康1,2   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程, 北京100081; 2 International Rice Research In-stitute, DAPO Box 7777, Metro Manila, Philippines
  • 收稿日期:2008-01-07 修回日期:1900-01-01 出版日期:2008-07-12 网络出版日期:2008-07-12
  • 通讯作者: 朱苓华

Physiological Characteristics Related to Stress-Tolerance in Introgression Line “PD29” with IR64 Genetic Background at the Tillering Stage

ZHAO Xiu-Qin1,XIE Xue-Wen1,SUN Yong1,DENG Jian-Li1,ZHU Ling-Hua1*,LI Zhi-Kang12   

  1. 1 Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
  • Received:2008-01-07 Revised:1900-01-01 Published:2008-07-12 Published online:2008-07-12
  • Contact: ZHU Ling-Hua

摘要: 以轮回亲本IR64(籼稻)及旱稻材料IRAT109为对照, 系统分析了“PD29”在灌溉(对照)与干旱(胁迫)条件下的相关生理性状特征。研究发现, 遭遇干旱胁迫后, “PD29”植株能够维持较高的相对含水量(RWC)且胁迫后复水2 h该株系的RWC迅速恢复到饱和状态, 表明其具有较强的御旱能力。干旱条件下, “PD29”的PS II最大光化学效率(Fv/Fm)、渗透势(Y)、脯氨酸含量(Pro)、活性氧清除系统活性(AOA)均显著高于IR64, 且相对于灌溉处理, 其RWC, Fv/Fm的降低幅度显著低于IR64, 净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)的降幅, Pro及AOA的增幅均高于IR64。与IRAT109比较, 干旱逆境下“PD29”的Pro含量显著偏高且AOA平均增幅较高。因此认为, “PD29”的优良耐旱性表现与其在逆境下脯氨酸含量及活性氧清除系统活性的显著增强有关。另外, 干旱环境下的Pn、GsTr的显著降低, 表明“PD29”的光合性能可塑性较强, 其光合性能在有利生长环境下能高效表达, 而在土壤水有限的环境下, 能够迅速降低以减少水分的进一步损失。

关键词: 水稻, 耐旱性, 光合生理, 植株水分, 抗氧化酶

Abstract: Drought tolerance (DT) or water-saving is becoming one of the most important target traits in rice breeding community under ever-increasing severe drought situation all over the world. The introgression line “PD29” with IR64 genetic background has promising yield performance under both drought (stress) and irrigation (control) conditions. In the present study, the physiological characteristics related to stress tolerance of the “PD29” were analysised with recurrent parent, IR64, and upland rice variety IRAT109 as control varieties under both drought and irrigation conditions. The results showed that “PD29” not only had higher leaf relative water content (RWC) under stress but also could recover RWC to a fully turgid (hydrated) state 2 h after re-watering which indicated that “PD29” has higher DT ability than control varieties at the tillering stage. Further analysis showed that “PD29” not only had higher maximum photochemical of FPS II efficiency (Fv/Fm), osmotic potential (Y), proline content (Pro), and antioxidants activity (AOA) than IR64 under drought condition but also presented less decrease in the Fv/Fm and RWC and more decrease in net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs) and more increase in Pro and AOA. Furthermore, compared to IRAT109, “PD29” had higher Pro and more increase in the AOA under drought condition. Therefore, it was concluded that the promising DT-performance of “PD29” was related to the significant increase of AOA and proline under the drought. Moreover, the significant decrease of the Pn, Gs, and Tr under the drought condition indicated that “PD29”has strong plasticity in photosynthetic capacity which can keep the higher photosynthesis under the adaptive circumstance and decrease the water loss through transpiration under the stress condition.

Key words: Rice, Drought tolerance, Photosynthesis, Plant water status, Antioxidant enzyme

中图分类号: 

  • 10.3724/SP.J.1006.2008.01227
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!