欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 118-123.doi: 10.3724/SP.J.1006.2009.00118

• 耕作栽培·生理生化 • 上一篇    下一篇

不同水分条件下常规尿素和控释尿素对玉米根冠生长及产量的影响

邵国庆,李增嘉,宁堂原,张民,江晓东,王芸,赵建波,吕美蓉,赵杰   

  1. 1山东农业大学农学院作物生物学国家重点实验室,山东泰安271018;2山东农业大学资源与环境学院,山东泰安271018;3龙口市农业局,山东龙口265701
  • 收稿日期:2008-04-28 修回日期:2008-09-12 出版日期:2009-01-12 网络出版日期:2008-11-18
  • 通讯作者: 宁堂原
  • 基金资助:

    本研究由山东省资源节约型社会科技支撑体系建设专项计划项目(2006JY06),山东省博士后科研项目专项经费资助(200603043),山东省中青年科学家科研奖励基金(2007BS06017),公益性行业科研专项经费(200803028-09)资助

Effects of Normal Urea and Release-Controlled Urea on Root and Shoot Growth and Yield of Maize in Different Water Conditions

SHAO Guo-Qing,LI Zeng-Jia,NING Tang-Yuan,ZHANG Min,JIANG Xiao-Dong,WANG Yun,ZHAO Jian-Bo,HU Mei-Rong,ZHAO Jie   

  1. 1College of Agronomy/State Key Laboratory of Crop Biology,Shandong Agricultural University,Tai'271018,China;2College of Resource and Environment,Shandong Agricultural University,Tai'an 271018,China;3Agriculture Bureau of Longkou City,Longkiu 265701,China
  • Received:2008-04-28 Revised:2008-09-12 Published:2009-01-12 Published online:2008-11-18
  • Contact: NING Tang-Yuan

摘要:

为了进一步探讨控释尿素在玉米上的应用效果, 20062007年在防雨棚中, 应用郑单958进行了池栽试验。在不同水分条件下, 比较了施用常规尿素和控释尿素后, 玉米各生育阶段的根系活力、植株生长及籽粒产量。与常规尿素(全部基施和基施+小喇叭口期追施)相比, 地上部干重、叶面积指数开花前较低, 开花后较高;成熟期籽粒产量显著高于不施氮对照和两个常规尿素处理, 生物产量显著高于不施氮对照和常规尿素全部基施处理。从籽粒产量看, 维持土壤田间最大持水量的50%, 控释尿素处理分别比常规尿素全部基施处理和分次施处理高27.3%12.1%;维持土壤田间最大持水量的75%, 分别比常规尿素全部基施处理和分次施处理高17.4%8.1%。相同氮肥处理, 土壤田间最大持水量维持75%处理比维持50%处理籽粒产量和生物产量平均分别高20.6%17.0%, 差异均达极显著水平。与常规尿素处理相比, 控释尿素处理花前根系数量、活性和根冠比均较低, 但花后三者能维持较高水平。可见, 控释尿素对玉米生长具有明显的前控后保效果;控释尿素与水分对玉米产量的耦合效应高于常规尿素, 其原因是生育后期能维持较高的根系数量及活性, 促进地上部干物质积累和转移。

关键词: 田间持水量, 常规尿素, 控释尿素, 玉米, 根冠比, 产量

Abstract:

As a prosperous fertilizer in crop production, release-controlled urea (CU) promotes the yield of maize (Zea mays L.) and nitrogen use efficiency with less environmental pollution than normal fertilizers. However, the interaction effects of CU and soil water content on the growth and development of maize have been rarely reported. In this study, the maize cultivar Zhengdan 958 was used to compare the differences of root activity, root and shoot growth, and yield between treatments with normal urea and CU under two water soil moisture conditions. The experiments were carried out in pools (10 m in length, 60 cm in width, and 1.2 m in depth) under a mobile water-proof shelter in 2006–2007. The normal urea was applied with basal (100% applied before sowing, NU) and split (40% applied before sowing and 60% applied at pretasselling stage, NS) dressing methods, whereas, the CU was totally applied before sowing. No urea applied was taken as the control. The results showed that the shoot dry weight and leaf area index of CU treatments were higher after anthesis and lower before anthesis than those of NU and NS treatments. As a result, the grain yield of CU treatment was significantly higher than those of NU and NS treatments, and the biomass of CU treatment was significantly higher (P < 0.05) than those of NU treatment and control. Under the condition of soil moisture at 50% of field capacity (W1), the grain yield of CU treatment was higher than those of NU and NS treatments by 27.3% and 12.1%, respectively. Under the condition of soil moisture at 75% of field capacity (W2), the grain yield of CU treatment was higher than those of NU and NS treatments by 17.4% and 8.1%, respectively. In the same urea treatment, the average values of grain yield and biomass were higher by 20.6% and 17.0% under W2 than those under W1, respectively. Root weight, root activity, and root/shoot ratio were lower before anthesis in CU treatment than in NU and NS treatments, but higher after anthesis in CU treatment than in NU treatment. The results suggest that the CU could have a remarkable early-decrease-and-late-increase effect on maize growth, and its coupling effect with soil moisture was higher than that of normal urea. The positive coupling effect of CU might be caused by the higher root activity and root/shoot ratio after anthesis, which could increase the accumulation and transportation of dry matters in the aboveground organs.

Key words: Field water capacity, Normal urea, Controlled release urea, Maize, Root/shoot ratio, Yield

[1]Wang S-F(王淑芬), Zhang X-Y(张喜英), Pei D(裴冬). Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat. Trans CSAE (农业工程学报), 2006, 22(2): 27–32 (in Chinese with English abstract)
[2]Thornley J H M. Modeling shoot: root relations: the only way forwards. Annals Bot, 1998, 81: 165–171
[3]Zhang S-Q(张岁岐), Shan L(山仑). Effects of nitrogen nutrition on the drought adaptation and water use of spring wheat. Res Soil & Water Conserv (水土保持研究), 1995, 2(1):31–36 (in Chinese with English abstract)
[4]Ren S-J(任书杰), Zhang L-M(张雷明), Zhang S-Q(张岁岐), Shang-Guan Z-P(上官周平). The effect of nitrogen nutrition on coordinate growth of root and shoot of winter wheat. Acta Bot Boreali-Occident (西北植物学报), 2003, 23(3):395–400 (in Chinese with English abstract)
[5]Zhang F-X(张凤翔), Zhou M-Y(周明耀), Zhou C-L(周春林), Qian X-Q(钱晓晴). Effects of water and fertilizer coupling on root morphological characteristics and activities of rice. Trans CSAE (农业工程学报), 2006, 22(5):197–200 (in Chinese with English abstract)
[6]Sabata R J, Mason S C. Corn hybrid interactions with soil nitrogen level and water regime. J Prod Agric, 1992, 5: 137–142
[7]Ogola J B O, Wheeler T R, Harris P M. Effects of nitrogen and irrigation on water use of maize crops. Field Crops Res, 2002, 78: 105–117
[8]Zand-Parsa S, Sepaskhah A R, Ronaghi A. Development and evaluation of integrated water and nitrogen model for maize. Agric Water Manag, 2006, 81: 227–256
[9]Kirda C, Topcu S, Kaman H, Ulger A C, Yazici A, Cetin M, Derici M R. Grain yield response and N-fertilizer recovery of maize under deficit irrigation. Field Crops Res, 2005, 93: 132–141
[10]Zhang W-X(张卫星), Zhao Z(赵致), Bai G-X(柏光晓), Fu F-J(付芳婧), Cao S-S(曹绍书). Response on water stress and low nitrogen in different maize hybrid varieties and evaluation for their adversity-resistance. Sci Agric Sin (中国农业科学), 2007, 40(7): 1361–1370 (in Chinese with English abstract)
[11]Sun K-J(孙克君), Mao X-Y(毛小云), Lu Q-M(卢其明), Liao Z-W(廖宗文). Manurial effect of several controlled-release N fertilizers (CRNFs) on forage maize and its physiological effects. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(3): 345–351 (in Chinese with English abstract)
[12]Wang Y(王艳), Wang X-B(王小波), Wang X-J(王小晶), Zhang Y(张渊), Su X-J(苏霄倩). Research on increase yield mechanisms of coated slow-release fertilizers and N utilization ratio by tracing. J Soil & Water Conserv (水土保持学报), 2006, 20(5): 109–111 (in Chinese with English abstract)
[13]Diez J A, Roman R, Cartagena M C, Vallejo A, Bustos A, Caballero R. Controlling nitrate pollution of aquifers by using different nitrogenous controlled release fertilizers in maize crop. Agric Ecosyst Environ, 1994, 48: 49–56
[14]Shoji S, Gandeza A T, Kimura K. Simulation of crop response to polyolefin-coated urea: II. Nitrogen uptake by corn. Soil Sci Soc Am J, 1991, 55: 1468–1473
[15]Gao J-F(高俊凤). Laboratory Techniques for Plant Physiology(植物生理学实验技术). Xi’an: World Books Publishing Company, 2000. pp 92–93 (in Chinese)
[16]Zhang M(张民), Shi Y-X(史衍玺), Yang S-X(杨守祥), Yang Y-C(杨越超). Status quo of study of controlled-release and slow-release fertilizers and progress made in this respect. J Chem Fert Ind (化肥工业), 2001, 28(5): 27–30, 63 (in Chinese with English abstract)
[17]Shoji S. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation. Sci China (Ser C: Life Sci), 2005, 48(z2): 912–920
[18]Gao Y-J(高亚军), Li S-X(李生秀), Tian X-H(田霄鸿), Li S-Q(李世清), Wang Z-H(王朝辉), Du J-J(杜建军). Effects of water supply levels in different growth stages on maize yield under different fertilizer levels. Acta Agron Sin (作物学报), 2006, 32(3): 415–422 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!