欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 256-260.doi: 10.3724/SP.J.1006.2010.00256

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个新矮生玉米种质资源矮生性状QTL的定位

石云素,于永涛,宋燕春,刘志斋,黎裕,王天宇   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京100081
  • 收稿日期:2009-06-29 修回日期:2009-09-09 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: shiyunsu@mail.caas.net.cn; Tel: 010-62186647
  • 基金资助:

    本研究由国家科技支撑计划项目(2006BAD13B03),北京市自然科学基金项目(6071003)和农作物种质资源保护与利用项目(NB06-070401-22-27-04)资助。

QTL Identification for Plant Height in a New Dwarf Germplasm of Maize

SHI Yun-Su,YU Yong-Tao,SONG Yan-Chun,LIU Zhi-Zhai, LI Yu,WANG Tian-Yu   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
  • Received:2009-06-29 Revised:2009-09-09 Published:2010-02-10 Published online:2009-12-21
  • Contact: shiyunsu@mail.caas.net.cn; Tel: 010-62186647

摘要:

用新发现的玉米矮生种质资源矮2003×冀257构建的255个F2:3家系为作图群体, 利用114个覆盖玉米全基因组的SSR标记构建连锁图谱, 图谱总长度2 852.1 cM, 标记间平均距离为27.42 cM。2006年在北京与海南进行随机区组试验, 鉴定了255个F2:3家系成株期株高。用复合区间作图法(composite interval mapping, CIM), 对控制玉米株高性状的遗传位点进行QTL检测。在两个不同环境下均检测到相同的控制玉米株高的QTL位点3个, 分别位于第1和第2条染色体。其中在第1染色体上的1.10~1.11区段存在一个控制株高的主效QTL, 与dwarf plant8 (d8)位置相近, 在北京和海南环境下分别能够解释株高表型变异的50.5%和37.5%, 作用方式表现为显性效应。深入的序列分析结果显示, 该基因/QTL位于已知的d8基因下游20~30 cM的染色体区间, 这可能是玉米中控制株高的一个新基因。

关键词: 玉米, 矮生资源, SSR, 株高, QTL

Abstract:

Dwarf germplasm is important for both breeding programs and basic researches in maize (Zea mays L.). Previously we found a naturally occurred dwarf mutant from the inbred “K36” and developed a new dwarf germplasm, “Ai 2003”, with good agronomical performance. Classical genetic analysis showed that this dwarfing character was controlled by a major single recessive nuclear gene. However, the character of plant height in the germplasm is also likely associated with other genetic loci. Therefore, quantitative trait locus (QTL) analysis was conducted to elucidate the genetic basis of plant height of this dwarf germplasm by using a segregating population consisting of 255 F2:3 lines derived from a cross between Ai 2003 and a normal inbred, Ji 257. A genetic linkage map was constructed by 114 polymorphism simple sequence repeat (SSR) markers covering the entire maize genome. The total map length was 2 852.1 cM, with an average distance of 27.4 cM between markers. Composite interval mapping (CIM) was used to identify the genes/QTLs controlled plant height based on the phenotypic characterization of 255 F2:3 families in Beijing and Hainan in 2006. The same three QTLs located on chromosomes 1 and 2 were identified under both environments, explaining 4.8% to 50.5% of the phenotypic variances, among which, one major QTL located in the region of bin 1.10–1.11 explained 50.5% and 37.5% of the phenotypic variation in Beijing and Hainan, respectively. A further sequences analysis revealed that the QTL is located in the 20–30 cM interval downstream of dwarf plant8 (d8), a well-known maize dwarf gene, implying that the locus is a gene newly discovered for controlling plant height in maize.

Key words: Maize, Dwarf germplasm, SSR, Plant height, QTL


[1]    
Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815–822

[2]    
Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Deales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. Green revolution′ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256–261

[3]    
Harberd N P, Freeling M.Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics, 1989, 121: 827–838

[4]    
Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler IV E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286–289

[5]    
Winkler R G, Freeling M. Physiological genetics of the dominant gibberellin non-responsive maize dwarfs, Dwarf8 and Dwarf9. Planta, 1994, 193: 341–348

[6]    
Dai J-R(戴景瑞). Dwarf genes and their genetic effect in maize. Hereditas (遗传), 1979, 1(5): 40–43 (in Chinese)

[7]    
Austin D F, Lee M, Veldboom L R. Genetic mapping in maize with hybrid progeny across testers and generations: plant height and flowering. Theor Appl Genet, 2001, 102: 163–176

[8]    
Beavis W D, Grant D, Albertsen D, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci. Theor Appl Genet, 1991, 83: 141–145

[9]    
Sari-Gorla M, Krajewski M, Di Fonzo N , Villa M, Frova C. Genetic analysis of drought tolerance in maize by molecular markers: II. Plant height and flowering. Theor Appl Genet, 1999, 99: 289–295

[10] 
Zhang Z M, Zhao M J, Ding H P, Rong T Z, Pan G T. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russian J Genet, 2006, 42: 306−310

[11] 
Shi Y-S(石云素), Yu Y-T(于永涛), Song Y-C(宋燕春), Wang T-Y(王天宇), Li Y(黎裕). Discovery and genetic characterization of a new dwarf germplasm in maize. J Plant Genet Resour (植物遗传资源学报), 2008, 9(4): 521–524 (in Chinese with English abstract)

[12] 
Saghai-Maroof M A, Soliman K L, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018

[13] 
Utz H F, Melchinger A E. PlabQTL: A program for composite interval mapping of QTL. J Agric Genomics, 1996, 2: 1–5

[14] 
Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2007 (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

[15] 
Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative trait loci in maize: I. Numbers, genomic distribution and types of gene action. Genetics, 1987, 116: 113–125

[16] 
Cui S-P(崔绍平), Sun S-Z(孙世珍), Xu Y(徐有), Zheng J-D(郑积德), Li H-J(李洪杰). Utilization of brachetic gene br-2 in maize breeding. In: Li J-X(李竞雄) ed. Progress in Maize Breeding Research(玉米育种研究进展). Beijing: Science Press, 1992, 4: 31–36 (in Chinese with English abstract)

[17] 
Agric-Sci Research Institute of Nanchong, Sichuan. Dwarf maize hybrids. Sci Agric Sin (中国农业科学), 1978, 11(2): 21–25 (in Chinese)

[18] 
He C(何川) , Zheng Z-P(郑祖平), Xie S-G(谢树果), Li Z(李钟), Liu D-H(刘代惠). Breeding of the maize monogenic br-2 dwarf lines. Sci Agric Sin (中国农业科学), 2009, 42(8): 2978–2981 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[14] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[15] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!