欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 249-255.doi: 10.3724/SP.J.1006.2010.00249

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦白粉病菌诱导的TaWRKY34基因的鉴定与分析

秦伟1,2,赵光耀2 ,曲志才1,*,张立超2,段佳磊2,李爱丽2,贾继增2,孔秀英2,*   

  1. 1曲阜师范大学生命科学学院,山东曲阜273165;2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部作物种质资源利用重点开放实验室,北京100081
  • 收稿日期:2009-05-06 修回日期:2009-07-11 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10A104)资助。

 Identification and Analysis of TaWRKY34 Gene Induced by Wheat Powdery Mildew (Blumeria graminis f. sp. tritici)

QIN Wei1,2,ZHAO Guang-Yao2,QU Zhi-Cai1,*,ZHANG Li-Chao2,DUAN Jia-Lei2, LI Ai-Li2,JIA Ji-Zeng2,KONG Xiu-Ying2,*
  

  1. 1 College of Life Science, Qufu Normal University, Qufu 273165, China; 2 Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China

  • Received:2009-05-06 Revised:2009-07-11 Published:2010-02-10 Published online:2009-12-21

摘要:

WRKY转录因子在植物抗病防卫反应中发挥重要作用。利用cDNA宏阵列(macroarray)RT-PCR相结合的方法,从小麦全长cDNA文库的WRKY转录因子中筛选出一个应答小麦白粉病菌胁迫的TaWRKY34转录因子,该基因编码464个氨基酸。染色体定位分析表明,该转录因子位于小麦第一同源群染色体的短臂上, 并且只在细胞核中表达。其蛋白序列与拟南芥、大麦和葡萄抗病相关WRKY转录因子的亲缘关系较近,与其中的3WRKY基因具有相似的表达模式。TaWRKY34Pm16/北京8377抗白粉病近等基因系中,对小麦白粉病菌、水杨酸和茉莉酸诱导的表达模式存在差异。TaWRKY34可能与小麦对白粉菌的抗性有关。

关键词: 小麦, 白粉病菌, WRKY转录因子, 染色体定位, 表达模式

Abstract:

WRKY transcription factors play important roles in plant defense signaling network. However, little is known about the biological roles of WRKY proteins in wheat(Triticum aestivum L.). The objectives of this study were to screen WRKY transcription factor genes conferring resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and disclose their function in wheat defense reaction. A WRKY transcription factor gene, TaWRKY34, was identified in response to Bgt by cDNA macroarray and semiquantitative RT-PCR from the wheat full-length cDNA libraries that were constructed in the authors’ earlier studies. This gene encodes 464 amino acid residues. TaWRKY34 was mapped onto short arms of chromosome 1B and 1D through blast search GrainGenes database and homemade full length cDNA library database of Aegilops tauschii. Further experiment indicated that TaWRKY34 also exists on chromosome 1AS through amplifying in Langdon D-genome disomic substitution lines and ChineseSpring nulli-tetrasomic lines with gene specific primers. Examining the subcellular localization of TaWARKY34, its coding region was fused to the 3’ end of green fluorescent protein (GFP). The GFP signal was detected only in the nucleus of onion epidermal cells to transiently express TaWRKY34-GFP, and the control-GFP protein distributed ubiquitously in both nuclei and cytoplasm. This suggests that TaWRKY34 is a nucleus-localized protein. Multiple sequence alignments of 57 WRKY domains from various species indicated that TaWRKY34 is closely related to WRKY transcription factors in response to pathogens in Arabidopsis thaliana (AtWRKY3, AtWRKY4 and AtWRKY33), Hordeum vulgare (HvWRKY42 and HvWRKY46), and Vitis vinifera (VvWRKY2) with identities ranging from 81.8% to 94.5%. Furthermore, TaWRKY34 has similar expression pattern with three sequences from A. thaliana, which was up-regulated at first and then down-regulated when inoculated with pathogens. The expression profiles of TaWRKY34 induced by powdery mildew fungus, salicylic acid and jasmonic acid were different between Pm16/Beijing 8377 near-isogenic lines (resistant to Bgt) and Beijing 837 (susceptible to Bgt). The results imply that TaWRKY34 is probably related to the resistance to powdery mildew in wheat.

Key words: Wheat, Blumeria graminis f. sp.tritici, WRKY transcription factor, Chromosome location, Expression pattern


[1] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5: 199-206

[2] Zhang Y J, Wang L J. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. BMC Evol Biol, 2005, 5: 1

[3] Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 2007, 10: 366-371

[4] Kim K C, Lai Z B, Fan B F, Chen Z X. Arabidopsis WRKY38and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell, 2008, 20: 2357-2371

[5] Liu X Q, Bai X Q, Qian Q, Wang X J, Chen M S, Chu C C. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res, 2005, 15: 593-603

[6] Ryu H S, Han M, Lee S K, Cho J I, Ryoo N, Heu S, Lee Y H, Bhoo S H, Wang G L, Hahn T R, Jeon J S. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep, 2006, 25:836-847

[7] Cai M, Qiu D Y, Yuan T, Ding X H, Li H J, Duan L, Xu C G, Li X H, Wang S P. Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ, 2008, 31: 86-96

[8] Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y, Li X H, Xu C G, Wang S P. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact, 2007, 20: 492-499

[9] Zhang J, Peng Y L, Guo Z J. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res, 2008, 18: 508-521

[10] Shimono M, Sugano S, Nakayama A, Jiang C J, Ono K, Toki S, Takatsuji H. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell, 2007, 19: 2064-2076

[11] Liu X Q, Bai X Q, Wang X J, Chu C C. OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol, 2007, 164: 969-979

[12] Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol, 2007, 65: 799-815

[13] Mangelsen E, Kilian J, Berendzen K W, Kolukisaoglu U H, Harter K, Jansson C, Wanke D. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 2008, 9: 194

[14] Shen Q H, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich I E, Schulze-Lefert P. Nuclear activity of MLA immune receptors links isolate-specific and basal disease resistance responses. Science, 2007, 315: 1098-1103

[15] Bélanger R R, Benhamou N, Menzies J G. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathogy, 2003, 93: 402-412

[16] Bhuiyan N H, Liu W, Liu G S, Selvaraj G, Wei Y, King J. Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol Biol, 2007, 64: 305-318

[17] Li A L, Wang M L, Zhou R H, Kong X Y, Hou N X, Wang W S, Jia J Z. Comparative analysis of early H2O2 accumulation in compatible and incompatible wheat-powdery mildew interactions. Plant Pathol, 2005, 54: 308-316

[18] AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich R A, Mengiste T. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J, 2006, 48: 28-44

[19] Oh S K, Baek K H, Park J M, Yi S Y, Yu S H, Kamoun S, Choi D. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol, 2008, 177: 977-989

[20] Mzid R, Marchive C, Blancard D, Deluc L, Barrieua F, Corio-Costet M-F, Drirab N, Hamdi S, Lauvergeat V. Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plant, 2007, 131: 434-447

[21] Dellagi A, Heilbronn J, Avrova A O, Montesano M, Palva E T, Stewart H E, Toth I K, Cooke D E L, Lyon G D, Birch P R J. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant Microbe Interact,2000, 13: 1092-1101

[22] Chen C H, Chen Z X. Isolation and characterization of two pathogen-and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol, 2000, 42: 387-396

[23] Larkin M A, Blackshields G, Brown N P, Chenna R. McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T G, Higgins D G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23: 2947-2948

[24] Clamp M, Cuff J, Searle S M, Barton G J. The Jalview Java alignment editor. Bioinformatics,2004, 20: 426-427

[25] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596-1599

[26] Dong J X, Chen C H, Chen Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51: 21-37

[27] Zheng Z Y, Qamar S A, Chen Z X, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J, 2006, 48: 592-605

[28] Loake G, Grant M. Salicylic acid in plant defense: The players and protagonists. Curr Opin in Plant Biol, 2007, 10: 466-472

[29] Panstruga R, Parker J E, Schulze-Lefert P. SnapShot: Plant immune response pathways. Cell, 2009, 136: 978.e1-3

[30] Schenk P M, Kazan K, Wilson I. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA, 2000, 97: 11655-11660

[31] Peng J Y, Deng X J, Huang J H, Jia S H, Miao X X, Huang Y P. Role of salicylic acid in tomato (Lycopersicon esculentum) plant defense against cotton bollworm, Helicoverpa armigera Hubner. Z Naturforsch C, 2004, 59: 856-862

[32] Lai Z H, Vinod K M, Zheng Z W, Fan B F, Chen Z X. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol, 2008, 8: 68

[33] Robatzek S, Somssich, I E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev, 2002, 16: 1139-1149
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[15] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!