欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (3): 376-384.doi: 10.3724/SP.J.1006.2010.00376

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

粳稻叶绿素含量QTL与其合成降解相关基因的比较分析

姜树坤1,张喜娟2,徐正进1,*,陈温福1   

  1. 1沈阳农业大学/农业部作物生理生态遗传育种重点开放实验室,辽宁沈阳110161;2辽宁省丹东农业科学院,辽宁凤城118109
  • 收稿日期:2009-10-15 修回日期:2009-12-08 出版日期:2010-03-12 网络出版日期:2010-01-22
  • 通讯作者: 徐正进, E-mail: xuzhengjin@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(30871468)和国家重点基础研究发展计划(973计划)项目(2009CB126007)资助。

Comparison between QTLs for Chlorophyll Content and Genes Controlling Chlorophyll Biosynthesis and Degradation in Japonica Rice (Oryza sativa L.)

JIANG Shu-Kun1,ZHANG Xi-Juan2,XU Zheng-Jin1,*,CHEN Wen-Fu1   

  1. 1Key Laboratory of Crop Physiology,Ecology,Genetics and Breeding,Ministry of Agriculture/Shenyang Agricultural University,Shenyang 110161,China;2Dandong Academy of Agricultural Sciences,Fengcheng 118109,China
  • Received:2009-10-15 Revised:2009-12-08 Published:2010-03-12 Published online:2010-01-22
  • Contact: XU Zheng-JIn, E-mail: xuzhengjin@126.com

摘要:

为剖析水稻叶绿素不同时期的表达规律及后期持绿的遗传机制,以沈农265和丽江新团黑谷的粳-粳交重组自交系为材料,对水稻分蘖期、抽穗期和成熟期的叶绿素含量以及生育后期的持绿能力进行QTL定位分析。检测到5个控制分蘖期叶绿素含量的QTL7个控制水稻抽穗期叶绿素含量的QTL10个控制成熟期叶绿素含量的QTL,分布在除第5染色体以外的11条染色体上。比较它们与编码叶绿素合成及降解过程中的重要酶的基因发现,虽然生育前期检测到的QTL较少,但对应的叶绿素合成降解相关基因却较多。随生育期的推移,检测到的QTL数目增多,但对应的叶绿素合成降解相关基因却减少。暗示生育前期大多数叶绿素合成(降解)相关基因表达的水平差异不大,后期控制叶绿素合成降解的个别关键基因表达水平增加。并以此为基础提出了叶片生育后期持绿的两种可能遗传基础。

关键词: 粳稻, 叶绿素含量, 持绿性, 数量性状位点, 叶绿素合成降解

Abstract:

To understand the expression patterns of chlorophyll content related genes at different stages and genetic mechanisms of stay-green at later stage, we analyzed the QTLs controlling chlorophyll content at the stages of tillering, heading and maturity by employing 126 recombinant inbred lines (RILs) derived from a cross between two japonica rice cultivars, Shennong 265 and Lijiangxintuanheigu. Five, seven and ten QTLs controlling chlorophyll contents at tillering stage, heading stage and maturity stage were detected, respectively. They were distributed on all rice chromosomes except chromosome 5. Comparison of the QTLs and the genes underlying the key enzymes of chlorophyll biosynthesis and degradation revealed that relatively more QTLs detected at earlier stage co-located with the genes related to chlorophyll biosynthesis and degradation. With the growth stage going on, more QTLs were detected but only a few of them involved in chlorophyll biosynthesis and degradation. The results suggested that the expression level of most genes related to chlorophyll biosynthesis (degradation) had no difference at earlier stage but specific key genes increased at later stage. And two possible genetic bases for stay-green were proposed.

Key words: Japonica rice, Chlorophyll content, Stay-green, Quantitative trait loci, Chlorophyll biosynthesis and degradation




[1] Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309-312



[2] Hörtensteiner S. Chlorophyll degradation during senescence. Annu Rev Plant Biol, 2006, 57: 55-77



[3] Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922-7927



[4] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745



[5] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39(5): 623-630



[6] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative trans-membrane protein. Theor Appl Genet, 2006, 112: 1164-1171



[7] Jiang S-K (姜树坤), Zhong M(钟鸣), Xu Z-J(徐正进). Classification of rice cultivars with RAPD molecular markers. J Shenyang Agric Univ (沈阳农业大学学报), 2006, 37(4): 639-641 (in Chinese with English abstract)



[8] Panaud O, Chen X, Mccouch S D. Development of micro-satellite marker and characterization of sample sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607



[9] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L. MAPMAKER: an interactive computer for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-182



[10] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468



[11] Huang C(黄成), Jiang S-K (姜树坤), Liu M-H(刘梦红), Xu Z-J(徐正进), Chen W-F(陈温福). QTL dissection of heading date in rice (Oryza sativa L. japanica). Acta Agric Boreali-Sin (华北农学报), 2009, 24(3): 7-9 ( in Chinese with English abstract)



[12] Cao S-Q(曹树青), Lu W(陆巍), Zhai H-Q(翟虎渠), Sheng S-L(盛生兰), Gong H-B(龚红兵), Yang T-N(杨图南), Zhang R-X(张荣铣). Research on the method to estimating flag leaf photosynthesis function duration at rice seedling stage by relative steady phase of chlorophyll content. Chin J Rice Sci (中国水稻科学), 2001, 15(4): 309-313 (in Chinese with English abstract)



[13] Liu W, Fu Y, Hu G, Si H, Zhu L, Wu C, Sun Z. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta,2007, 226: 785-795



[14] Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325-337



[15] Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463-472



[16] Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet, 1997, 31: 61-89



[17] Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40



[18] Morita R, Kusaba M, Yamaguchi H, Amano E, Miyao A, Hirochika H, Nishimura M. Characterization of chlorophyllide a oxygenase (CAO) in rice (Oryza sativa). Breed Sci, 55: 361-364



[19] Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805-818



[20] Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362-1375



[21] Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197-209



[22] Tong H-H(童汉华), Mei H-W(梅捍卫), Xing Y-Z(邢永忠), Cao Y-P(曹一平), Yu X-Q(余新桥), Zhang S-Q(章善庆), Luo L-J(罗利军). QTL analysis for morphological and physiological characteristics of flag leaf at the late developmental stage in rice. Chin J Rice Sci (中国水稻科学), 2007, 21(5): 493-499 (in Chinese with English abstract)



[23] Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin S Y, Monna L, Sasaki T, Ohsugi R. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet, 2001, 102: 793-800

 

[24] Yang Q-H(杨权海), Lu W(陆巍), Hu M-L(胡茂龙), Wang C-M(王春明), Zhang R-X(张荣铣), Yano M(失野昌裕), Wan J-M(万建民). QTL and epistatic interaction underlying leaf chlorophyll and H2O2 content variation in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2003, 30(3): 245-250



[25] Abdelkhalik A F, Shishido R, Nomura K, Ikehashi H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet, 2005, 110: 1226-1235



[26] A Jia L-T(阿加拉铁), Zeng L-J(曾龙军), Xue D-W(薛大伟), Hu J(胡江), Zeng D-L(曾大力), Gao Z-Y(高振宇), Guo L-B(郭龙彪), Li S-G(李仕贵), Qian Q(钱前). QTL analysis for chlorophyll content in four grain-filling stage in rice. Acta Agron Sin (作物学报), 2008, 34(1): 61-66 (in Chinese with English abstract)

[27] Liu D-H(刘道宏). Plant leaf senescence. Plant Physiol Commun (植物生理学通讯), 1983, (2): 16-21 (in Chinese)
[1] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[2] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[3] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[4] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析[J]. 作物学报, 2021, 47(5): 904-914.
[5] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[6] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249.
[7] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[8] 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184.
[9] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[10] 卫平洋,裘实,唐健,肖丹丹,朱盈,刘国栋,邢志鹏,胡雅杰,郭保卫,高尚勤,魏海燕,张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4): 571-585.
[11] 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna Pillay, 王才林. 水稻Wxmp背景下SSIIaSSIIIa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11): 1690-1702.
[12] 荐红举, 霍强, 高玉敏, 李阳阳, 谢玲, 魏丽娟, 刘列钊, 卢坤, 李加纳. 用全基因组关联分析筛选甘蓝型油菜叶片叶绿素含量候选基因[J]. 作物学报, 2020, 46(10): 1557-1565.
[13] 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116.
[14] 蒙姜宇,傅鹰,贺亚军,钱伟. 利用DH和IF2群体检测油菜籽粒油酸、亚油酸、亚麻酸含量QTL[J]. 作物学报, 2019, 45(9): 1338-1348.
[15] 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!