欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1529-1537.doi: 10.3724/SP.J.1006.2010.01529

• 耕作栽培·生理生化 • 上一篇    下一篇

利用叶片高光谱指数预测水稻群体叶层全氮含量

田永超,杨杰,姚霞,曹卫星,朱艳*   

  1. 南京农业大学 / 江苏省信息农业高技术研究重点实验室,江苏南京210095
  • 收稿日期:2010-02-05 修回日期:2010-04-20 出版日期:2010-09-12 网络出版日期:2010-07-12
  • 通讯作者: 朱艳, E-mail: yanzhu@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30900868),国家高技术研究发展计划(863计划)项目(2010AA10A301),教育部新世纪优秀人才支持计划项目(NCET-08-0797),江苏省创新学者攀登项目(BK20081479),教育部高等学校博士学科点专项科研基金项目(20070307035)和国家科技支撑计划项目(2008BADA4B02)资助.

Monitoring Canopy Leaf Nitrogen Concentration Based on Leaf Hyperspectral Indices in Rice

TIAN Yong-Chao,YANG Jie,YAO Xia,CAO Wei-Xing,ZHU Yan*   

  1. Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2010-02-05 Revised:2010-04-20 Published:2010-09-12 Published online:2010-07-12
  • Contact: ZHU Yan,E-mail: yanzhu@njau.edu.cn

摘要: 通过测定叶片高光谱来快速估测整个水稻叶层全氮含量对于水稻氮素诊断有重要意义。本文通过连续3年不同施氮水平和不同品种类型的4个大田试验,分生育期同步测定了不同叶位叶片的高光谱反射率及叶层全氮含量,并系统分析了叶片水平多种高光谱指数与水稻叶层全氮含量的定量关系。结果表明,不同叶位叶片的光谱反射率与叶层全氮含量的相关程度不同,顶二叶(L2)表现最好、顶三叶(L3)次之,而L2和L3的平均光谱(L23)有助于进一步提高光谱指数的敏感性,是估测叶层氮含量的适宜叶位组合。绿光560 nm和红边705 nm波段附近光谱反射率与叶层全氮含量呈极显著负相关关系,两者分别与近红外波段组合而成的光谱比值指数可较好地监测水稻叶层全氮含量,其中绿光、红边窄波段比值指数SR(R780, R580)和SR(R780, R704)表现较好,与叶层全氮含量的决定系数分别为0.887和0.884;独立试验数据检验的RMSE分别为0.216和0.235。将上述2个窄波段比值指数中的近红外、绿光波段和红边波段宽度分别扩展至100、20和10 nm,从而构建的宽波段比值指数SR[AR(750-850), AR(568-588)]和SR[AR(750-850), AR(699-709)]与叶层全氮含量相关性仍具有较高水平,线性回归模型的拟合精度(R2)为0.886和0.883,检验RMSE值分别为0.218和0.237。从而在叶片水平,确立了适于叶层全氮含量估测的基于绿光、红边与近红外波段的比值组合和波段适宜宽度。

关键词: 水稻, 叶片, 高光谱比值指数, 叶层全氮含量, 波段宽度, 估算模型

Abstract: The objectives of this study were to analyze the relationships between canopy leaf nitrogen concentration (LNC) and leaf spectral reflectance characteristics of different leaf positions, and to establish useful method for nondestructive and quick assessment of canopy LNC in rice (Oryza sativa L.). Four field experiments were conducted with different N rates and rice cultivars across three growing seasons at different eco-sites, and time-course measurements were taken on leaf hyperspectral reflectance of 350–2 500 nm and LNC at different leaf positions over growth stages. Quantitative relationships and monitoring models of canopy LNC to leaf hyperspectral indices were established by extracting sensitive bands and developing proper spectral indices. The results indicated that the performance of leaf hyperspectral indices were different with varied leaf positions for monitoring canopy LNC, the best single leaf position was the second leaf from the top (L2), the third leaf from the top followed (L3), and the averaged spectra of L2 and L3 (L23) was the optimum leaf spectra combination which contributed to improving the sensitivity to canopy LNC. The simple ratio spectral indices (SR [Rλ1, Rλ2]) combined green reflectance around 560 nm and red-edge reflectance around 705 nm to near infrared region (NIR) could effectively estimate canopy LNC in rice. New green and red-edge narrow band SRs as SR (R780, R580) and SR (R780, R704) performed the best, with the coefficients of determination (R2) respectively as 0.887 and 0.884, and RMSE respectively as 0.216 and 0.235. When the widths of green, red-edge and NIR bands were expanded to 100, 20, and 10 nm respectively, the newly developed broad band SRs as SR [AR(750–850), AR(568–588)] and SR [AR(750–850), AR(699–709)] were also closely related to canopy LNC, with the coefficients of determination (R2) respectively as 0.886 and 0.883, and RMSE respectively as 0.218 and 0.237 at L23 level.

Key words: Rice(Oryza sativa L.), Leaf, Hyper-spectral ration index, Canopy leaf nitrogen concentration, Band width, Monitoring model

[1] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression
[J].Remote Sens Environ 
[2] Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur J Agron, 2003, 19: 611-618  
[3] Vane G. Terrestrial imaging spectrometry: Current status, future trends. Remote Sens Environ, 1993, 44: 109-127  
[4] Lee T, Reddy K R, Sassenrath-Cole G F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration
[J].Crop Sci  
[5] Stroppiana D, MBoschetti M, Brivio P A, Bocchi S. Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry
[J].Field Crops Res  
[6] Lee Y J, Yang C M, Chang K W, Shen Y.A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy
[J].Agron J 
[7] Feng W, Yao X, Zhu Y, Tian Y C, Cao W X. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat
[J].Eur J Agron  
[8] Xue L H, Cao W X, Luo W H, Dai T B, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance
[J].Agron J  
[9] Tian Y-C(田永超), Yang Y(杨杰), Yao X(姚霞), Zhu Y(朱艳), Cao W-X(曹卫星). Quantitative relationship between hyper-spectral red edge position and canopy leaf nitrogen concentration in rice
[J].Acta Agron Sin (作物学报.2009, 35(9):1681-1690  
[10] Tian Y-C(田永超), Yang Y(杨杰), Yao X(姚霞), Zhu Y(朱艳), Cao W-X(曹卫星). Estimation of leaf canopy nitrogen concentration with red edge area shape parameters in rice. J Plant Ecol (植物生态学报), 2009,33(4): 791-801 (in Chinese with English abstract) 
[11] Wang S-H(王绍华), Cao W-X(曹卫星), Wang Q-S(王强盛), Ding Y-F(丁艳锋), Huang P-S(黄丕生), Ling Q-H(凌启鸿). Positional distribution of leaf color and diagnosis of nitrogen nutrition in rice plant. Sci Agric Sin (中国农业科学), 2002, 35(12): 1461-1466 (in Chinese with English abstract)  
[12] Jiang L-G(江立庚), Cao W-X(曹卫星), Jiang D(姜东), Dai T-P(戴廷波), Dong D-F(董登峰), Gan X-Q(甘秀芹), Wei S-Q(韦善清), Xu J-Y(徐建云). Distribution of leaf nitrogen, amino acids and chlorophyll in leaves of different positions and relationship with nitrogen nutrition diagnosis in rice. Acta Agron Sin (作物学报), 2004, 30(8): 739-744(in Chinese with English abstract)  
[13] Zhao D, Reddy K R, Kakani V G, Read J J, Carter G A. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil, 2003, 257: 205-217   
[14] Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton
[J].Agron J  
[15] Zhao D, Reddy K R, Kakani V G, Read J J. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum
[J].Eur J Agron  
[16] Sun X-M(孙雪梅), Zhou Q-F(周启发), He Q-X(何秋霞). Hyperspectral variables in predicting leaf chlorophyll content and grain protein content in rice. Acta Agron Sin (作物学报), 2005, 31(7): 844-854(in Chinese with English abstract) 
[17] Yi Q-X(易秋香), Huang J-F(黄敬峰), Wang X-Z(王秀珍), Qian Y(钱翌). Hyperspectral remote sensing estimation models for nitrogen contents of maize. Trans CSAE (农业工程学报), 2006, 22(9): 138-143 (in Chinese with English abstract)  
[18] Gitelson A A, Merzlyak M N. Quantitative estimation of chlorophyll a using reflectance spectra: experiments with autumn chestnut and maple leaves
[J].J Photochem Photobiol  
[19] Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method
[J].Remote Sens Environ   
[20] Li X-Y(李向阳), Liu G-S(刘国顺), Yang Y-F(杨永锋), Zhao C-H(赵春华), Yu Q-W(喻奇伟), Song S-X(宋世旭). Relationship between hyperspectra parameters and physiological and biochemical indexes of flue-cured tobacco leaves. Sci Agric Sin (中国农业科学), 2007, 40(5): 987-994 (in Chinese with English abstract) 
[21] Roberts D A, Ustin S L, Ogunjemiyo S, Greenberg J, Dobrowski S Z, Chen J Q, Hinckley T M. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems, 2004, 7: 545-562 
[22] Matson P, Johnson L, Billow C, Miller J, Pu R. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect
[J].Ecol Appl 
[23] Pinar A, Curran P J. Grass chlorophyll and the reflectance red edge
[J].Int J Remote Sens  
[24] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
[J].Remote Sens Environ  
[25] Teillet P M, Staenz K, Williams D J. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions
[J].Remote Sens Environ   
[26] Thenkabail P S, Enclona E A, Ashton M S, Legg C, Dieu M J D. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests
[J].Remote Sens Environ
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!