作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1519-1528.doi: 10.3724/SP.J.1006.2010.01519

• 耕作栽培·生理生化 • 上一篇    下一篇


杨沈斌1,申双和1,*,赵小艳1,赵艳霞2,许吟隆3,王主玉1,刘 娟1,张玮玮1   

  1. 1 南京信息工程大学应用气象学院,江苏南京 210044;2 中国气象科学研究院,北京 100081;3 中国农业科学院农业环境和可持续发展研究所,北京100081
  • 收稿日期:2010-02-09 修回日期:2010-05-24 出版日期:2010-09-12 网络出版日期:2010-07-05
  • 通讯作者: 申双和, E-mail: yqzhr@nuist.edu.cn; Tel: 025-58731194
  • 基金资助:


The Impacts of Climate Changes on Rice Production in the Middle and Lower Reaches of the Yangtze River

YANG Shen-Bin1,SHEN Shuang-He1,ZHAO Xiao-Yan1,ZHAO Yan-Xia2,XU Jin-Long3,WANG Zhu-Yu1,LIU Juan1,ZHANG Wei-Wei1   

  1. 1 College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2 Chinese Academy of Meteorological Sciences, Beijing 100081, China; 3 Institute of Agro-Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2010-02-09 Revised:2010-05-24 Published:2010-09-12 Published online:2010-07-05
  • Contact: SHEN Shuang-He,E-mail:yqzhr@nuist.edu.cn;Tel:025-58731194

摘要: 选择长江中下游平原作为研究区域,按照政府间气候变化专业委员会(IPCC)排放情景特别报告(SRES)中的A2和B2方案,将基于区域气候模式PRECIS构建的气候变化情景文件与水稻生长模型ORYZA2000结合,模拟基准时段(1961—1990)气候(Baseline)和2021—2050时段A2、B2情景下的水稻产量,分析未来气候变化对长江中下游水稻产量的影响。构建两种影响评估方法,重点分析增温和大气CO2肥效作用对水稻产量的影响。结果表明,不考虑CO2肥效作用时,随着温度升高,水稻生育期缩短,产量下降。A2情景下水稻生育期平均缩短4.5 d,产量减少15.2%;B2情景下平均缩短3.4 d,产量减少15%。其中,减产达到20%以上的区域集中在安徽中南部、湖北东南部和湖南东部地区。当考虑CO2肥效作用后,A2情景下水稻平均产量减少5.1%,B2情景平均减少5.8%。减产区域缩小且幅度降低,江西和浙江部分地区则呈现一定程度增产,但增幅<10%。大气CO2肥效作用一定程度上可提高水稻产量,使晚稻在增温的不利影响下仍呈现不同程度的增产态势,但对单季稻和早稻的增产贡献仍不足以抵消升温的负面影响。另外,大气CO2肥效作用可有利于提高未来气候变化下水稻的稳产性。

关键词: 长江中下游稻区, 气候变化, 水稻, QRYZA2000

Abstract: Increasing atmospheric greenhouse gas concentration is expected to induce significant climate change over the next century, but the impacts on society remain highly uncertain. This paper aimed to assess the potential impacts of climate change on rice crop (Oryza sativa L.) production in the middle and lower reaches of the Yangtze River, where is one of the most important food production regions in China. Data taken from the PRECIS regional climate model were used as the baseline (1961–1990) and future (2021–2050) periods under IPCC SRES A2 and B2 scenario conditions, and were used as input of the rice model ORYZA2000. Simulations were performed with and without considering the enhanced CO2-fertilization effects to evaluate the response of rice crop to raised temperature and CO2 concentration, respectively. The results indicated that the rice growth duration would be shortened and yield would be declined significantly with raising temperature future when CO2-fertilization effects was not considered. The rice growth duration would be shortened by 4.5 d and yield would be reduced by 15.2% under A2 scenario in 2021–2050 periods compared with the baseline weather while they would be 3.4 d shortened and 15% reduced respectively under B2 scenario in the same period. The areas where rice yield reduced more than 20% concentrated on most regions of Anhui, Hubei and Hunan provinces. The significance of the enhanced CO2-fertilization effect to rice crop was found under the simulated future elevated CO2 concentrations (2021-2050) for both A2 and B2 scenarios. But it was still not enough to offset the negative effects of warming for single crop rice and early rice, except for the late rice that the contribution of CO2-fertilization effect on rice yield was greater. With considering CO2-fertilization effect, the rice yields declined by 5.1% and 5.8% under A2 and B2 scenarios, respectively. The areas with a serious yield reduction decreased and the average yield reduction were lessened remarkably. Meanwhile, the areas with an increase in rice yields were founded in some parts of Jiangxi and Zhejiang provinces, although the yield increase might be less than 10%. In addition, the yield stability, defined as the ratio of standard deviation to average yield at each grid across each province, would be increased in 2021–2050 periods when CO2-fertilization effect was considered, indicating that the CO2-fertilization effect may reduce the future yield variability. However, there were still many uncertainties in this study. The possible impact of water stress under future climate was not considered, due to the automatic irrigation pattern selected. The soil parameters used as input to the ORYZA2000 might increase the uncertainties for assessing the impacts of climate change on rice yield. Finally, the overall results were compared with those in other studies, in which CERES-Rice was employed and a good agreement was obtained, indicating that the rice model ORYZA2000 can be well applied in assessing the impact of climate change on rice crop in China.

Key words: Middle and Lower Valley of the Yangtze River, Climate change, Rice, ORYZA2000

[1] Wang K-Z(王宗明), Song K-S(宋开山), Li X-Y(李晓燕), Zhang P(张柏), Liu D-W(刘殿伟). Effects of climate change on yield of maize in maize zone of Songneng Plain in the past 40 years. J Arid Land Res Environ (干旱区资源与环境), 2007, 21(9): 113-117 (in Chinese with English abstract)
[2] Fang X-Q(方修琦), Wang Y(王媛), Xu T(徐锬), Yuan Y-R(云雅如). Contribution of climate warming to rice yield in Heilongjiang province. Acta Geol Sin (地理学报), 2004, 59(6): 820-828 (in Chinese with English abstract)
[3] Xiao G J, Zhang Q, Yao Y-B, Zhao H, Wang R Y, Bai H Z, Zhang F J. Impact of recent climate change on the yield of winter wheat at low and high altitudes in semi-arid northwestern China
[J].Agric Ecosyst Environ
[4] Tao F L, Yokozawa M, Liu J Y, Zhang Z. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends
[J].Clim Res
[5] Zhao H-Y(赵海燕), Yao F-M(姚凤梅), Zhang Y(张勇), Xu B(徐宾), Yuan J(袁静), Hu Y-N(胡亚南), Xu Y-L(许吟隆). Correlation analysis of rice seed setting rate and weight of 1000-grain and agro-meteorology over the middle and lower reaches of the Yangtze river. Sci Agric Sin (中国农业科学), 2006, 39(9): 1765-1771 (in Chinese with English abstract)
[6] Yao F-M(姚凤梅), Zhang J-H(张佳华). Change of relative extreme high temperature events and climate risk in rice growing period in China from 1981-2000. J Nat Disasters (自然灾害学报), 2009, 18(4): 37-42 (in Chinese with English abstract)
[7] Mo X G, Liu S X, Lin Z H, Guo R P. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agric Ecosyst Environ, 2009, 134(1/2): 67-78
[8] Chavas D R, Cesa lzaurralde R, Thomson A M, Gao X J. Long-term climate change impacts on agricultural productivity in eastern China
[J].Agric For Meteorol
[9] Ju H(居辉), Xiong W(熊伟), Xu Y-L(许吟隆), Lin E-D(林而达). Impacts of climate change on wheat yield in China. Acta Agron Sin (作物学报), 2005, 31(10): 1340-1343 (in Chinese with English abstract)
[10] Tubiello F-N, Donatelli M, Rosenzweig C, Stockle C-O. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations
[J].Eur J Agron
[11] Tao F L, Zhang Z, Liu J Y, Yokozawa M. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection
[J].Agric For Meteorol
[12] Zhu D-W(朱大威), Jin Z-Q(金之庆). Impacts of changes in both climate and its variability on food production in Northeast China
[J].Acta Agron Sin (作物学报.2008, 34(9):1588-1597
[13] Jin Z-Q(金之庆), Ge D-K(葛道阔), Shi C-L(石春林), Gao L-Z(高亮之). Several strategies of food crop production in the Northeast China plain for adaptation to global climate change-A modeling study. Acta Agron Sin (作物学报), 2002, 28(1): 24-31 (in Chinese with English abstract)
[14] Lin E D. Agricultural vulnerability and adaptation to global warming in China. Water Air Soil Pollut, 1996, 92: 63-73
[15] Jin Z-Q(金之庆), Ge D-K(葛道阔), Fang J(方娟). Assessing the impact of climate change on Chinese rice production. J Nanjing For Univ (南京林业大学学报), 1991, 10(suppl): 11-19 (in Chinese with English abstract)
[16] Jin Z-Q(金之庆), Fang J(方娟). Prospect to the impacts of climate change on winter wheat production in China. Acta Agron Sin (作物学报), 1994, 20(2): 186- 197 (in Chinese with English abstract)
[17] Jin Z-Q(金之庆), Ge D-K(葛道阔), Chen H(陈华), Zheng X-L(郑喜莲). Positive and negative effects of global climate change on soybean production in China. Soybean Sci (大豆科学), 1994, 13(4): 302−311 (in Chinese with English abstract)
[18] Jin Z-Q(金之庆), Ge D-K(葛道阔), Zheng X-L(郑喜莲), Chen H(陈华). Assessing the potential impacts of global climate change on maize production in China. Acta Agron Sin (作物学报), 1996, 22(5): 513−524 (in Chinese with English abstract)
[19] Ge D-K(葛道阔), Jin Z-Q(金之庆), Shi C-L(石春林), Gao L-Z(高亮之). Gradual impacts of climate change on rice production and adaptation strategies in southern China. Jiangsu J Agric Sci (江苏农业学报), 2002, 18(1): 1-8 (in Chinese with English abstract)
[20] Chen H(陈华), Jin Z-Q(金之庆), Ge D-K(葛道阔), Shi C-L(石春林), Gao L-Z(高亮之), Wei X-F(魏秀芳). RCCMOD: An effect model to assess the application of global climate change on rice production in southern China. Jiangsu J Agric Sci (江苏农业学报), 2004, 20(3): 129-134 (in Chinese with English abstract)
[21] Jones R G, Noguer M, Hassell D C. Generating High Resolution Climate Change Scenarios Using PRECIS. Exeter, UK: Met Office Hadley Center, 2004. pp 1-45
[22] Lin E D, Xiong W, Ju H, Xu Y L, Li Y, Bai L, Li X Y. Climate change impacts on crop yield and quality with CO2 fertilization in China
[J].Philos Trans R Soc B
[23] Yao F-M(姚凤梅), Zhang J-H(张佳华), Sun B-N(孙白妮), Xu Y-L(许吟隆), Lin E-D(林而达), Men Y-Z(门艳忠). Simulation and analysis of effects of climate change on rice yields in southern China. Clim Environ Res (气候与环境研究), 2007, 12(5): 659-666 (in Chinese with English abstract)
[24] Xiong W(熊伟), Ju H(居辉), Xu Y-L(许吟隆), Lin E-D(林而达). Regional simulation of wheat yield in China under the climatic change conditions. Chin J Eco-Agric (中国生态农业学报), 2006, 14(2): 164-167 (in Chinese with English abstract)
[25] Xiong W, Lin E D, Ju H, Xu Y L. Climate change and critical thresholds in China’s food security
[J].Clim Change
[26] State Soil Survey Service of China(全国土壤普查办公室). China Soil Series, Vol. 5 (中国土种志第五卷). Beijing: China Agriculture Press, 1993. pp 2-389 (in Chinese)
[27] Cheng S-H(程式华), Li J(李建). Modern Chinese Rice (现代中国水稻). Beijing: Jindun Publishing House, 2007. pp 116-240 (in Chinese)
[28] Xu Y L, Huang X Y, Zhang Y, Lin W T, Lin E D. Statistical analysis of climate change scenarios over China in the 21st century. Adv Clim Change Res, 2006, 2(suppl-1): 50-53
[29] Wei H-B(魏怀斌), Zhang Z-P(张占庞), Yang J-P(杨金鹏). Establishing method for soil database of SWAT model. Water Res Hydro-Power Eng (水利水电技术), 2007, 38 (6): 15-18 (in Chinese with English abstract)
[30] Bouman B A M, Kropff M J, Tuong T P, Wopereis M C S, ten Berge H F M, van Laar H H. ORYZA2000: Modeling Lowland Rice. Los Banos: International Rice Research Institute, 2001. pp 1-158
[31] Jansen D-M. Potential rice yields in future weather conditions in different parts of Asia. Neth J Agric Sci, 1990, 38: 661-680
[32] Yao F-M(姚凤梅). Assessing the Impact of Climate Change on Food Production in China. PhD Dissertation of Chinese Academy of Sciences, 2005. pp 75-82 (in Chinese with English abstract)
[33] Krishnan P, Swain D K, Chandra Bhaskar B, Nayak S K, Dash R N. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies
[J].Agric Ecosyst Envrion
[34] Matthews R B, Kropff M J, Horie T, Bachelet D. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation
[J].Agric Syst
[35] Bannayan M, Kobayashi K, Kim H Y, Lieffering M, Okada M, Miura S. Modeling the interactive effects of atmospheric CO2 and N on rice growth and yield
[J].Field Crops Res
[36] Zhao H-Y (赵海燕). Impacts of Climate Change to Rice Production and Adaptability Analysis over Middle and Lower Reaches of the Yangtze River. MS Dissertation of the Chinese Academy of Agricultural Sciences, 2006. pp 29-44 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Full text



No Suggested Reading articles found!